Asymptotic behavior of singularly perturbed systems with periodic nonlinearities and external forces

V. Smirnova, N. V. Utina, E. E. Pak
{"title":"Asymptotic behavior of singularly perturbed systems with periodic nonlinearities and external forces","authors":"V. Smirnova, N. V. Utina, E. E. Pak","doi":"10.1109/STAB.2018.8408402","DOIUrl":null,"url":null,"abstract":"In this paper we consider singularly perturbed phase synchronization systems with external disturbances. The systems are described by integro-differential Volterra equations with periodic nonlinear functions and a small parameter at the higher derivative. The disturbed systems examined in this paper have (like undisturbed ones) infinite sequence of equilibrium points. So for them the main problem of phase synchronization systems remains: whether the system is gradient-like, i.e. its any solution converges to one of equilibria. In this paper we offer frequency-algebraic criteria which guarantee that the convergence of any solution of undisturbed system under singular perturbation is not destroyed by external disturbance. If the system is not gradient-like it may have periodic solutions. We demonstrate that the relaxation of frequency-algebraic criteria leads to conditions for the absence of high frequency periodic solutions. The results of the investigation are uniform with respect to the small parameter.","PeriodicalId":395462,"journal":{"name":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAB.2018.8408402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we consider singularly perturbed phase synchronization systems with external disturbances. The systems are described by integro-differential Volterra equations with periodic nonlinear functions and a small parameter at the higher derivative. The disturbed systems examined in this paper have (like undisturbed ones) infinite sequence of equilibrium points. So for them the main problem of phase synchronization systems remains: whether the system is gradient-like, i.e. its any solution converges to one of equilibria. In this paper we offer frequency-algebraic criteria which guarantee that the convergence of any solution of undisturbed system under singular perturbation is not destroyed by external disturbance. If the system is not gradient-like it may have periodic solutions. We demonstrate that the relaxation of frequency-algebraic criteria leads to conditions for the absence of high frequency periodic solutions. The results of the investigation are uniform with respect to the small parameter.
具有周期非线性和外力的奇异摄动系统的渐近行为
本文研究具有外部扰动的奇摄动相位同步系统。系统用周期非线性函数的积分-微分Volterra方程描述,其高阶导数参数较小。本文所研究的扰动系统与未扰动系统一样,具有无穷平衡点序列。因此,对于他们来说,相位同步系统的主要问题仍然是:系统是否是类梯度的,即它的任何解收敛于其中一个平衡点。本文给出了保证奇异扰动下无扰动系统任意解的收敛性不被外界扰动破坏的频率代数判据。如果系统不是类梯度的,它可能有周期解。我们证明了频率代数准则的松弛导致高频周期解不存在的条件。对于小参数,研究结果是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信