Mixture correntropy unscented Kalman filter for power system dynamic state estimation

Boyu Tian, Haiquan Zhao
{"title":"Mixture correntropy unscented Kalman filter for power system dynamic state estimation","authors":"Boyu Tian, Haiquan Zhao","doi":"10.1117/12.2631436","DOIUrl":null,"url":null,"abstract":"Unscented Kalman filter (UKF) based on correntropy criterion shows robustness when power system measurement suffers from non-Gaussian noise. To improve the performance of traditional algorithms, this paper proposed a generalized mixture correntropy unscented Kalman filter (GMC-UKF) for power system dynamic state estimation. Specifically, we construct the mixture correntropy by two generalized Gaussian kernels. After introducing the weighted state error and measurement error into the mixture correntropy cost function, we adopt fixed-point iteration to obtain optimal estimation. Finally, the robustness and accuracy of the proposed algorithm for power system state estimation are verified on IEEE-30bus.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2631436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Unscented Kalman filter (UKF) based on correntropy criterion shows robustness when power system measurement suffers from non-Gaussian noise. To improve the performance of traditional algorithms, this paper proposed a generalized mixture correntropy unscented Kalman filter (GMC-UKF) for power system dynamic state estimation. Specifically, we construct the mixture correntropy by two generalized Gaussian kernels. After introducing the weighted state error and measurement error into the mixture correntropy cost function, we adopt fixed-point iteration to obtain optimal estimation. Finally, the robustness and accuracy of the proposed algorithm for power system state estimation are verified on IEEE-30bus.
混合熵无嗅卡尔曼滤波用于电力系统动态状态估计
基于熵准则的无气味卡尔曼滤波(UKF)在非高斯噪声条件下具有较好的鲁棒性。为了提高传统算法的性能,本文提出了一种用于电力系统动态估计的广义混合熵无嗅卡尔曼滤波器(gmmc - ukf)。具体地说,我们用两个广义高斯核构造混合熵。在混合熵代价函数中引入加权状态误差和测量误差,采用不动点迭代得到最优估计。最后,在ieee -30总线上验证了该算法对电力系统状态估计的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信