Information assessment of SAR data for ATR

Erik Blasch, M. Bryant
{"title":"Information assessment of SAR data for ATR","authors":"Erik Blasch, M. Bryant","doi":"10.1109/NAECON.1998.710144","DOIUrl":null,"url":null,"abstract":"Without successful adaptive multisensor fusion or online registration techniques, automatic target recognition (ATR) algorithms are prone to poor object classifications. Multisensor fusion for a given situation assessment includes identifying measurement information for task completion and reducing image uncertainty in the presence of clutter. By extracting synthetic aperture radar (SAR) image informational features, image registration and target classification is achievable. This paper examines SAR information-theoretic features for a target orientation and proposes a method for target classification.","PeriodicalId":202280,"journal":{"name":"Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185)","volume":"417 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON 1998. Celebrating 50 Years (Cat. No.98CH36185)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1998.710144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Without successful adaptive multisensor fusion or online registration techniques, automatic target recognition (ATR) algorithms are prone to poor object classifications. Multisensor fusion for a given situation assessment includes identifying measurement information for task completion and reducing image uncertainty in the presence of clutter. By extracting synthetic aperture radar (SAR) image informational features, image registration and target classification is achievable. This paper examines SAR information-theoretic features for a target orientation and proposes a method for target classification.
ATR SAR数据的信息评估
如果没有成功的自适应多传感器融合或在线配准技术,自动目标识别(ATR)算法容易对目标进行较差的分类。多传感器融合用于给定的态势评估,包括识别任务完成的测量信息和减少存在杂波的图像不确定性。通过提取合成孔径雷达(SAR)图像信息特征,实现图像配准和目标分类。研究了目标定位的SAR信息理论特征,提出了一种目标分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信