DeepHash for Image Instance Retrieval: Getting Regularization, Depth and Fine-Tuning Right

Jie Lin, Olivier Morère, A. Veillard, Ling-yu Duan, Hanlin Goh, V. Chandrasekhar
{"title":"DeepHash for Image Instance Retrieval: Getting Regularization, Depth and Fine-Tuning Right","authors":"Jie Lin, Olivier Morère, A. Veillard, Ling-yu Duan, Hanlin Goh, V. Chandrasekhar","doi":"10.1145/3078971.3078983","DOIUrl":null,"url":null,"abstract":"This work focuses on representing very high-dimensional global image descriptors using very compact 64-1024 bit binary hashes for instance retrieval. We propose DeepHash: a hashing scheme based on deep networks. Key to making DeepHash work at extremely low bitrates are three important considerations -- regularization, depth and fine-tuning -- each requiring solutions specific to the hashing problem. In-depth evaluation shows that our scheme outperforms state-of-the-art methods over several benchmark datasets for both Fisher Vectors and Deep Convolutional Neural Network features, by up to 8.5% over other schemes. The retrieval performance with 256-bit hashes is close to that of the uncompressed floating point features -- a remarkable 512x compression.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3078983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This work focuses on representing very high-dimensional global image descriptors using very compact 64-1024 bit binary hashes for instance retrieval. We propose DeepHash: a hashing scheme based on deep networks. Key to making DeepHash work at extremely low bitrates are three important considerations -- regularization, depth and fine-tuning -- each requiring solutions specific to the hashing problem. In-depth evaluation shows that our scheme outperforms state-of-the-art methods over several benchmark datasets for both Fisher Vectors and Deep Convolutional Neural Network features, by up to 8.5% over other schemes. The retrieval performance with 256-bit hashes is close to that of the uncompressed floating point features -- a remarkable 512x compression.
用于图像实例检索的DeepHash:正则化、深度和微调正确
这项工作的重点是使用非常紧凑的64-1024位二进制哈希来表示非常高维的全局图像描述符,用于实例检索。我们提出了DeepHash:一种基于深度网络的哈希方案。使DeepHash在极低比特率下工作的关键是三个重要的考虑因素——正则化、深度和微调——每个都需要针对哈希问题的特定解决方案。深入评估表明,我们的方案在费舍尔向量和深度卷积神经网络特征的几个基准数据集上优于最先进的方法,比其他方案高出8.5%。256位哈希的检索性能接近于未压缩的浮点特征——显著的512倍压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信