Shared Resource Monitoring and Throughput Optimization in Cloud-Computing Datacenters

Jaideep Moses, R. Iyer, R. Illikkal, S. Srinivasan, K. Aisopos
{"title":"Shared Resource Monitoring and Throughput Optimization in Cloud-Computing Datacenters","authors":"Jaideep Moses, R. Iyer, R. Illikkal, S. Srinivasan, K. Aisopos","doi":"10.1109/IPDPS.2011.98","DOIUrl":null,"url":null,"abstract":"Many data centers employ server consolidation to maximize the efficiency of platform resource usage. As a result, multiple virtual machines (VMs) simultaneously run on each data center platform. Contention for shared resources between these virtual machines has an undesirable and non-deterministic impact on their performance behavior in such platforms. This paper proposes the use of shared resource monitoring to (a) understand the resource usage of each virtual machine on each platform, (b) collect resource usage and performance across different platforms to correlate implications of usage to performance, and (c) migrate VMs that are resource-constrained to improve overall data center throughput and improve Quality of Service (QoS). We focus our efforts on monitoring and addressing shared cache contention and propose a new optimization metric that captures the priority of the VM and the overall weighted throughput of the data center. We conduct detailed experiments emulating data center scenarios including on-line transaction processing workloads (based on TPC-C) middle-tier workloads (based on SPECjbb and SPECjAppServer) and financial workloads (based on PARSEC). We show that monitoring shared resource contention (such as shared cache) is highly beneficial to better manage throughput and QoS in a cloud-computing data center environment.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Many data centers employ server consolidation to maximize the efficiency of platform resource usage. As a result, multiple virtual machines (VMs) simultaneously run on each data center platform. Contention for shared resources between these virtual machines has an undesirable and non-deterministic impact on their performance behavior in such platforms. This paper proposes the use of shared resource monitoring to (a) understand the resource usage of each virtual machine on each platform, (b) collect resource usage and performance across different platforms to correlate implications of usage to performance, and (c) migrate VMs that are resource-constrained to improve overall data center throughput and improve Quality of Service (QoS). We focus our efforts on monitoring and addressing shared cache contention and propose a new optimization metric that captures the priority of the VM and the overall weighted throughput of the data center. We conduct detailed experiments emulating data center scenarios including on-line transaction processing workloads (based on TPC-C) middle-tier workloads (based on SPECjbb and SPECjAppServer) and financial workloads (based on PARSEC). We show that monitoring shared resource contention (such as shared cache) is highly beneficial to better manage throughput and QoS in a cloud-computing data center environment.
云计算数据中心共享资源监控与吞吐量优化
许多数据中心采用服务器整合来最大限度地提高平台资源的使用效率。因此,每个数据中心平台上同时运行多个虚拟机。在这些平台上,这些虚拟机之间对共享资源的争用会对它们的性能行为产生不希望看到的、不确定的影响。本文建议使用共享资源监控来(a)了解每个平台上每个虚拟机的资源使用情况,(b)收集跨不同平台的资源使用情况和性能,以关联使用对性能的影响,以及(c)迁移资源受限的虚拟机,以提高整体数据中心吞吐量和改善服务质量(QoS)。我们将重点放在监控和解决共享缓存争用上,并提出了一个新的优化指标,该指标可以捕获VM的优先级和数据中心的总体加权吞吐量。我们进行了详细的实验,模拟数据中心场景,包括在线事务处理工作负载(基于TPC-C)中间层工作负载(基于SPECjbb和SPECjAppServer)和财务工作负载(基于PARSEC)。我们表明,监控共享资源争用(如共享缓存)对于更好地管理云计算数据中心环境中的吞吐量和QoS非常有益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信