Map Matching Integration Algorithm Based on Historical Trajectory Data

Xin Lai, Jianhua Chen, Jingjing Cao, Fei Xia
{"title":"Map Matching Integration Algorithm Based on Historical Trajectory Data","authors":"Xin Lai, Jianhua Chen, Jingjing Cao, Fei Xia","doi":"10.1109/ISPCE-CN48734.2019.8958632","DOIUrl":null,"url":null,"abstract":"The insufficient accuracy of GPS technology leads to the sampling trajectory data being away from the actual road. In order to improve the accuracy of GPS trajectory data for matching to map, a map matching integration algorithm based on historical trajectory data is proposed. Firstly projection distance and hidden Markov model are used respectively to compare the matching results. Then the difference road segments are found and the DBSCAN algorithm is used to cluster the historical trajectory data to adjust the segments. Our experiment uses the truck trajectory data to test the algorithm. The results show that the map matching integration algorithm effectively improves the accuracy of map matching.","PeriodicalId":221535,"journal":{"name":"2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium on Product Compliance Engineering - Asia (ISPCE-CN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCE-CN48734.2019.8958632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The insufficient accuracy of GPS technology leads to the sampling trajectory data being away from the actual road. In order to improve the accuracy of GPS trajectory data for matching to map, a map matching integration algorithm based on historical trajectory data is proposed. Firstly projection distance and hidden Markov model are used respectively to compare the matching results. Then the difference road segments are found and the DBSCAN algorithm is used to cluster the historical trajectory data to adjust the segments. Our experiment uses the truck trajectory data to test the algorithm. The results show that the map matching integration algorithm effectively improves the accuracy of map matching.
基于历史轨迹数据的地图匹配集成算法
GPS技术精度不足,导致采样轨迹数据偏离实际道路。为了提高GPS轨迹数据与地图匹配的精度,提出了一种基于历史轨迹数据的地图匹配积分算法。首先分别使用投影距离和隐马尔可夫模型对匹配结果进行比较。然后找到不同路段,利用DBSCAN算法对历史轨迹数据进行聚类,调整路段;我们的实验使用卡车轨迹数据来测试算法。结果表明,地图匹配积分算法有效提高了地图匹配的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信