{"title":"Monoclonal Antibody Therapies for Neuromyelitis Optica Spectrum Disorder","authors":"Woojun Kim","doi":"10.59578/jmsni.2023.14.1.15","DOIUrl":null,"url":null,"abstract":"Neuromyelitis optica spectrum disorder (NMOSD) is caused by antibodies that target the aquaporin-4 (AQP4) water channel expressed on astrocytes. Specific antibody binding to AQP4 produces complement-dependent cytotoxicity, resulting in inflammation and demyelination. New biologic treatments demonstrate high efficacy and good safety for patients with AQP4-immunoglobulin G-positive NMOSD. They were eculizumab, an anti-complement C5 antibody, satralizumab, an anti-interleukin-6 receptor antibody, and inebilizumab and rituximab, which targets CD19 and CD20, respectively, causing depletion of B-cells. In this review, the pathophysiology of NMOSD, the methodology and results of the recent studies examining monoclonal antibody therapies, and the optimal therapeutic strategy for NMOSD were covered.","PeriodicalId":324885,"journal":{"name":"Journal of Multiple Sclerosis and Neuroimmunology","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiple Sclerosis and Neuroimmunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59578/jmsni.2023.14.1.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is caused by antibodies that target the aquaporin-4 (AQP4) water channel expressed on astrocytes. Specific antibody binding to AQP4 produces complement-dependent cytotoxicity, resulting in inflammation and demyelination. New biologic treatments demonstrate high efficacy and good safety for patients with AQP4-immunoglobulin G-positive NMOSD. They were eculizumab, an anti-complement C5 antibody, satralizumab, an anti-interleukin-6 receptor antibody, and inebilizumab and rituximab, which targets CD19 and CD20, respectively, causing depletion of B-cells. In this review, the pathophysiology of NMOSD, the methodology and results of the recent studies examining monoclonal antibody therapies, and the optimal therapeutic strategy for NMOSD were covered.