Selectivity estimation in web query optimization

Shashidhar H R, G T Raju, V. Murthy
{"title":"Selectivity estimation in web query optimization","authors":"Shashidhar H R, G T Raju, V. Murthy","doi":"10.1145/3018896.3152305","DOIUrl":null,"url":null,"abstract":"Web Query optimization techniques have not scaled up to the quality of classical database optimizers. The main reason is the lack of availability of meta data statistics from local data sources. This leads to enormous errors in the calculation of optimization parameters such as selectivity of an operator which can degrade the query execution performance and result in bloated response time. In this work, the problem of selectivity estimation is addressed through Histogram construction and Probabilistic selectivity estimation. Both these techniques are robust and scalable to any kind of Web Query Engine. Empirical results also demonstrate the superior quality of these techniques.","PeriodicalId":131464,"journal":{"name":"Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3018896.3152305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Web Query optimization techniques have not scaled up to the quality of classical database optimizers. The main reason is the lack of availability of meta data statistics from local data sources. This leads to enormous errors in the calculation of optimization parameters such as selectivity of an operator which can degrade the query execution performance and result in bloated response time. In this work, the problem of selectivity estimation is addressed through Histogram construction and Probabilistic selectivity estimation. Both these techniques are robust and scalable to any kind of Web Query Engine. Empirical results also demonstrate the superior quality of these techniques.
网页查询优化中的选择性估计
Web查询优化技术还没有达到经典数据库优化器的质量。主要原因是缺乏来自本地数据源的元数据统计信息。这将导致在计算优化参数(如操作符的选择性)时出现巨大错误,从而降低查询执行性能并导致响应时间膨胀。本文通过直方图构造和概率选择性估计来解决选择性估计问题。这两种技术都是健壮的,并且可扩展到任何类型的Web查询引擎。实证结果也证明了这些技术的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信