Accurate visual tracking by combining Bayesian and evolutionary optimization framework

G. Jati, A. A. Gunawan, W. Jatmiko, A. Febrian
{"title":"Accurate visual tracking by combining Bayesian and evolutionary optimization framework","authors":"G. Jati, A. A. Gunawan, W. Jatmiko, A. Febrian","doi":"10.1109/ICACSIS.2016.7872795","DOIUrl":null,"url":null,"abstract":"Visual tracking is the process of locating, identifying, and determining of an object within video frames. From a Bayesian perspective, this is done by estimating the posterior density function. On the other hand, evolutionary optimization perspective would like to generate and select sufficiently optimize solution using two major components: diversification and intensification. This research will develop visual tracking algorithm using a Bayesian approach with evolutionary optimization in order to perform accurate tracking. The main idea is to combine Particle Markov Chain Monte Carlo (Particle-MCMC) as representation of Bayesian approach, with evolutionary optimization that is Particle Swarm Optimization (PSO) in each video frame. The visual tracking is regulated by Particle-MCMC filter algorithm and PSO will work within this filter to get more accurate tracking. Based on the dataset groundtruth, we found the accuracy of tracking can be increased considerably comparing to our previous research.","PeriodicalId":267924,"journal":{"name":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2016.7872795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Visual tracking is the process of locating, identifying, and determining of an object within video frames. From a Bayesian perspective, this is done by estimating the posterior density function. On the other hand, evolutionary optimization perspective would like to generate and select sufficiently optimize solution using two major components: diversification and intensification. This research will develop visual tracking algorithm using a Bayesian approach with evolutionary optimization in order to perform accurate tracking. The main idea is to combine Particle Markov Chain Monte Carlo (Particle-MCMC) as representation of Bayesian approach, with evolutionary optimization that is Particle Swarm Optimization (PSO) in each video frame. The visual tracking is regulated by Particle-MCMC filter algorithm and PSO will work within this filter to get more accurate tracking. Based on the dataset groundtruth, we found the accuracy of tracking can be increased considerably comparing to our previous research.
结合贝叶斯与进化优化框架的精确视觉跟踪
视觉跟踪是在视频帧中定位、识别和确定目标的过程。从贝叶斯的角度来看,这是通过估计后验密度函数来完成的。另一方面,进化优化视角希望通过多样化和集约化两个主要组成部分来生成和选择充分优化的解决方案。本研究将利用进化优化的贝叶斯方法开发视觉跟踪算法,以实现精确的跟踪。其主要思想是将粒子马尔可夫链蒙特卡罗(Particle- mcmc)作为贝叶斯方法的表示,与每帧视频中的粒子群优化(PSO)进化优化相结合。视觉跟踪由Particle-MCMC滤波算法调节,粒子群算法在此滤波下工作以获得更精确的跟踪。基于数据集groundtruth,我们发现与之前的研究相比,跟踪的准确性可以大大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信