Vu Lam, Duy-Dinh Le, Sang Phan Le, S. Satoh, Due Arm Duong, T. Ngo
{"title":"Evaluation of low-level features for detecting violent scenes in videos","authors":"Vu Lam, Duy-Dinh Le, Sang Phan Le, S. Satoh, Due Arm Duong, T. Ngo","doi":"10.1109/SOCPAR.2013.7054129","DOIUrl":null,"url":null,"abstract":"Automatically detecting violent scenes in videos not only has great potential in several applications (such as movie selection or recommendation for children) but also is a very hot academic research topic. Since 2011, violent scene detection task is one of the core tasks of MediaEval, a benchmarking initiative dedicated to evaluating new algorithms for multimedia access and retrieval1. In this paper, we evaluate the performance of low-level audio/visual features for the violent scene detection task using the datasets and evaluation protocol provided by the MediaEval organizers. Our result report can be used as a baseline for comparison of new algorithms in this task.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Automatically detecting violent scenes in videos not only has great potential in several applications (such as movie selection or recommendation for children) but also is a very hot academic research topic. Since 2011, violent scene detection task is one of the core tasks of MediaEval, a benchmarking initiative dedicated to evaluating new algorithms for multimedia access and retrieval1. In this paper, we evaluate the performance of low-level audio/visual features for the violent scene detection task using the datasets and evaluation protocol provided by the MediaEval organizers. Our result report can be used as a baseline for comparison of new algorithms in this task.