Torbalama karar ağacı tabanlı makine öğrenimi kullanılarak güneş ışınımı tahmini uygulaması

Hayrettin Toylan
{"title":"Torbalama karar ağacı tabanlı makine öğrenimi kullanılarak güneş ışınımı tahmini uygulaması","authors":"Hayrettin Toylan","doi":"10.34186/klujes.1106357","DOIUrl":null,"url":null,"abstract":"Solar energy is one of the most widely used renewable energy sources to generate electricity. However, the amount of solar radiation reaching the earth's surface is variable, creating uncertainty in the output of electrical power generation systems that use this source. Therefore, solar irradiance prediction becomes a critical process in planning. This study presents a short-term prediction of solar irradiance using bagging decision tree-based machine learning. As the inputs of the proposed method, air temperature, hour, day, month, and previous solar irradiance values were determined. The performance of the proposed method is tested on the measured data. The R2 and RMSE values are 0.87 and 91.282, respectively, according to the results obtained. As a result, it has been revealed that the varying solar irradiance can be predicted with acceptable differences with this method.","PeriodicalId":244308,"journal":{"name":"Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kırklareli Üniversitesi Mühendislik ve Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34186/klujes.1106357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Solar energy is one of the most widely used renewable energy sources to generate electricity. However, the amount of solar radiation reaching the earth's surface is variable, creating uncertainty in the output of electrical power generation systems that use this source. Therefore, solar irradiance prediction becomes a critical process in planning. This study presents a short-term prediction of solar irradiance using bagging decision tree-based machine learning. As the inputs of the proposed method, air temperature, hour, day, month, and previous solar irradiance values were determined. The performance of the proposed method is tested on the measured data. The R2 and RMSE values are 0.87 and 91.282, respectively, according to the results obtained. As a result, it has been revealed that the varying solar irradiance can be predicted with acceptable differences with this method.
太阳能是应用最广泛的可再生能源之一。然而,到达地球表面的太阳辐射量是可变的,这给使用太阳辐射源的发电系统的输出带来了不确定性。因此,太阳辐照度预测成为规划中的一个关键环节。本研究提出了利用套袋决策树为基础的机器学习对太阳辐照度的短期预测。作为该方法的输入,确定了空气温度、小时、日、月和以前的太阳辐照度值。通过实测数据对该方法的性能进行了验证。所得结果显示,R2为0.87,RMSE为91.282。结果表明,用该方法可以在可接受的误差范围内预测太阳辐照度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信