Neural Network Based Evil Waveforms Detection

Alexis Louis
{"title":"Neural Network Based Evil Waveforms Detection","authors":"Alexis Louis","doi":"10.23919/RFI48793.2019.9111769","DOIUrl":null,"url":null,"abstract":"Distortions of GNSS signals can lead to unacceptable pseudo-range errors. The object of study is a certain type of distortion — evil waveforms (EWF) — which is a rare perturbation occuring at the stage of signal generation. Detecting those distortions post-correlation traditionally involve designing hand crafted structure tests on a densely sampled autocorrelation function (ACF). However, traditional hand crafted tests have to be designed for specific scenarios hence lack flexibility compared to data-based methods. A neural network architecture capable of processing the structure of the ACF is proposed, implicitly learning structure tests, in order to tackle the evil waveforms detection problem.","PeriodicalId":111866,"journal":{"name":"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/RFI48793.2019.9111769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Distortions of GNSS signals can lead to unacceptable pseudo-range errors. The object of study is a certain type of distortion — evil waveforms (EWF) — which is a rare perturbation occuring at the stage of signal generation. Detecting those distortions post-correlation traditionally involve designing hand crafted structure tests on a densely sampled autocorrelation function (ACF). However, traditional hand crafted tests have to be designed for specific scenarios hence lack flexibility compared to data-based methods. A neural network architecture capable of processing the structure of the ACF is proposed, implicitly learning structure tests, in order to tackle the evil waveforms detection problem.
基于神经网络的邪恶波形检测
GNSS信号的失真会导致不可接受的伪距离误差。本文研究的对象是一种畸变——邪恶波形(EWF),它是发生在信号产生阶段的一种罕见的扰动。检测这些畸变后相关通常需要在密集采样自相关函数(ACF)上设计手工结构测试。然而,传统的手工测试必须为特定的场景设计,因此与基于数据的方法相比缺乏灵活性。提出了一种能够处理ACF结构的神经网络体系结构,即隐式学习结构测试,以解决不良波形检测问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信