{"title":"Neural Network Based Evil Waveforms Detection","authors":"Alexis Louis","doi":"10.23919/RFI48793.2019.9111769","DOIUrl":null,"url":null,"abstract":"Distortions of GNSS signals can lead to unacceptable pseudo-range errors. The object of study is a certain type of distortion — evil waveforms (EWF) — which is a rare perturbation occuring at the stage of signal generation. Detecting those distortions post-correlation traditionally involve designing hand crafted structure tests on a densely sampled autocorrelation function (ACF). However, traditional hand crafted tests have to be designed for specific scenarios hence lack flexibility compared to data-based methods. A neural network architecture capable of processing the structure of the ACF is proposed, implicitly learning structure tests, in order to tackle the evil waveforms detection problem.","PeriodicalId":111866,"journal":{"name":"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 RFI Workshop - Coexisting with Radio Frequency Interference (RFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/RFI48793.2019.9111769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Distortions of GNSS signals can lead to unacceptable pseudo-range errors. The object of study is a certain type of distortion — evil waveforms (EWF) — which is a rare perturbation occuring at the stage of signal generation. Detecting those distortions post-correlation traditionally involve designing hand crafted structure tests on a densely sampled autocorrelation function (ACF). However, traditional hand crafted tests have to be designed for specific scenarios hence lack flexibility compared to data-based methods. A neural network architecture capable of processing the structure of the ACF is proposed, implicitly learning structure tests, in order to tackle the evil waveforms detection problem.