Constitutive Modeling of Multiaxial Deformation and Induced Anisotropy in Superplastic Materials

M. Khraisheh
{"title":"Constitutive Modeling of Multiaxial Deformation and Induced Anisotropy in Superplastic Materials","authors":"M. Khraisheh","doi":"10.1115/imece2000-1196","DOIUrl":null,"url":null,"abstract":"\n The multiaxial deformation of superplastic materials is modeled within a continuum theory of viscoplasticity using a generalized anisotropic dynamic yield function. The anisotropic dynamic yield function is capable of describing the evolution of the initial anisotropic state of the yield potential through the evolution of unit vectors defining the direction of anisotropy. The evolution of the direction of anisotropy is represented by a constitutive spin such that initially it is identical to the Eulerian spin and as deformation continues, it tends towards an orthotropic spin. Experiments on the model Pb-Sn alloy were conducted and used to calibrate and verify the constructed model. It is shown that the model in conjunction with the anisotropic dynamic yield function is capable of predicting the actual trend of the induced axial stresses recorded in fixed-end torsion experiments.","PeriodicalId":245159,"journal":{"name":"Recent Trends in Constitutive Modeling of Advanced Materials","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Constitutive Modeling of Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The multiaxial deformation of superplastic materials is modeled within a continuum theory of viscoplasticity using a generalized anisotropic dynamic yield function. The anisotropic dynamic yield function is capable of describing the evolution of the initial anisotropic state of the yield potential through the evolution of unit vectors defining the direction of anisotropy. The evolution of the direction of anisotropy is represented by a constitutive spin such that initially it is identical to the Eulerian spin and as deformation continues, it tends towards an orthotropic spin. Experiments on the model Pb-Sn alloy were conducted and used to calibrate and verify the constructed model. It is shown that the model in conjunction with the anisotropic dynamic yield function is capable of predicting the actual trend of the induced axial stresses recorded in fixed-end torsion experiments.
超塑性材料多轴变形及诱导各向异性的本构建模
在粘塑性连续介质理论中,采用广义各向异性动态屈服函数来模拟超塑性材料的多轴变形。各向异性动态屈服函数能够通过定义各向异性方向的单位向量的演化来描述屈服势初始各向异性状态的演化。各向异性方向的演变由本构自旋表示,最初它与欧拉自旋相同,随着变形的继续,它趋向于正交各向异性自旋。对模型Pb-Sn合金进行了实验,并对所建立的模型进行了标定和验证。结果表明,该模型结合各向异性动态屈服函数能够预测固定端扭转试验记录的诱导轴向应力的实际趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信