A Function-Level Behavior Model for Anomalous Behavior Detection in Hybrid Mobile Applications

Jian Mao, Ruilong Wang, Yueh-Ting Chen, Yinhao Xiao, Yaoqi Jia, Zhenkai Liang
{"title":"A Function-Level Behavior Model for Anomalous Behavior Detection in Hybrid Mobile Applications","authors":"Jian Mao, Ruilong Wang, Yueh-Ting Chen, Yinhao Xiao, Yaoqi Jia, Zhenkai Liang","doi":"10.1109/IIKI.2016.2","DOIUrl":null,"url":null,"abstract":"Hybrid mobile applications (or apps) are based on web technologies, such as HTML5 and JavaScript, and run in a browser environment. They facilitate cross-platform development. However, the security issues of web technologies are inherited by hybrid mobile apps, where the injected code may execute with the system-level privilege. In this paper, we propose a behavior model to detect malicious behaviors in hybrid mobile apps. Our model uses function-level information to describe how an app's behaviors are activated. Furthermore, once script injection happens, the behaviors made by the injected code can be detected according to the deviation from the app's behavior model.","PeriodicalId":371106,"journal":{"name":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIKI.2016.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hybrid mobile applications (or apps) are based on web technologies, such as HTML5 and JavaScript, and run in a browser environment. They facilitate cross-platform development. However, the security issues of web technologies are inherited by hybrid mobile apps, where the injected code may execute with the system-level privilege. In this paper, we propose a behavior model to detect malicious behaviors in hybrid mobile apps. Our model uses function-level information to describe how an app's behaviors are activated. Furthermore, once script injection happens, the behaviors made by the injected code can be detected according to the deviation from the app's behavior model.
混合移动应用中异常行为检测的功能级行为模型
混合移动应用程序(或应用程序)基于web技术,如HTML5和JavaScript,并在浏览器环境中运行。它们促进了跨平台开发。然而,混合移动应用程序继承了web技术的安全问题,其中注入的代码可能以系统级特权执行。在本文中,我们提出了一种行为模型来检测混合移动应用中的恶意行为。我们的模型使用功能级信息来描述应用程序的行为是如何被激活的。此外,一旦脚本注入发生,被注入代码的行为就可以根据与应用程序行为模型的偏差来检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信