Identification problem for nonlinear beam -- extension for different types of boundary conditions

J. Radová, J. Machalová
{"title":"Identification problem for nonlinear beam -- extension for different types of boundary conditions","authors":"J. Radová, J. Machalová","doi":"10.21136/panm.2022.18","DOIUrl":null,"url":null,"abstract":"Identification problem is a framework of mathematical problems dealing with the search for optimal values of the unknown coefficients of the considered model. Using experimentally measured data, the aim of this work is to determine the coefficients of the given differential equation. This paper deals with the extension of the continuous dependence results for the Gao beam identification problem with different types of boundary conditions by using appropriate analytical inequalities with a special attention given to the Wirtinger's inequality and its modification. On the basis of these results for the different types of the boundary conditions the existence theorem for the identification problem can be proven.","PeriodicalId":197168,"journal":{"name":"Programs and Algorithms of Numerical Mathematics 21","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Programs and Algorithms of Numerical Mathematics 21","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21136/panm.2022.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identification problem is a framework of mathematical problems dealing with the search for optimal values of the unknown coefficients of the considered model. Using experimentally measured data, the aim of this work is to determine the coefficients of the given differential equation. This paper deals with the extension of the continuous dependence results for the Gao beam identification problem with different types of boundary conditions by using appropriate analytical inequalities with a special attention given to the Wirtinger's inequality and its modification. On the basis of these results for the different types of the boundary conditions the existence theorem for the identification problem can be proven.
非线性梁的识别问题——不同类型边界条件下的扩展问题
辨识问题是一个数学问题的框架,涉及寻找所考虑模型的未知系数的最优值。利用实验测量的数据,这项工作的目的是确定给定微分方程的系数。本文利用适当的解析不等式对具有不同边界条件的高梁识别问题的连续相关结果进行了推广,并着重讨论了Wirtinger不等式及其修正。在这些结果的基础上,对于不同类型的边界条件,可以证明辨识问题的存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信