Parallelizing Motion JPEG 2000 with CUDA

S. Datla, Naga Sathish Gidijala
{"title":"Parallelizing Motion JPEG 2000 with CUDA","authors":"S. Datla, Naga Sathish Gidijala","doi":"10.1109/ICCEE.2009.277","DOIUrl":null,"url":null,"abstract":"Due to the rapid growth of Graphics Processing Unit (GPU) processing capability, using GPU as a coprocessor for assisting the CPU in computing massive data has become indispensable. Nvidia’s CUDA general-purpose graphical processing unit (GPGPU) architecture can greatly benefit single instruction multiple thread (SIMT) styled, computationally expensive programs. Video encoding, to an extent, is an excellent example of such an application which can see impressive performance gains from CUDA optimization. This paper details the experience of porting the motion JPEG 2000 reference encoder to the CUDA architecture. Each major structural/computational unit of JPEG 2000 is discussed in the CUDA framework and the results are provided wherever required. Our experimental results demonstrate that the CUDA based implementation works 20.7 times faster than the original implementation on the CPU.","PeriodicalId":343870,"journal":{"name":"2009 Second International Conference on Computer and Electrical Engineering","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2009.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Due to the rapid growth of Graphics Processing Unit (GPU) processing capability, using GPU as a coprocessor for assisting the CPU in computing massive data has become indispensable. Nvidia’s CUDA general-purpose graphical processing unit (GPGPU) architecture can greatly benefit single instruction multiple thread (SIMT) styled, computationally expensive programs. Video encoding, to an extent, is an excellent example of such an application which can see impressive performance gains from CUDA optimization. This paper details the experience of porting the motion JPEG 2000 reference encoder to the CUDA architecture. Each major structural/computational unit of JPEG 2000 is discussed in the CUDA framework and the results are provided wherever required. Our experimental results demonstrate that the CUDA based implementation works 20.7 times faster than the original implementation on the CPU.
并行运动JPEG 2000与CUDA
随着图形处理单元(Graphics Processing Unit, GPU)处理能力的快速增长,使用GPU作为协处理器来辅助CPU进行海量数据的计算已经变得必不可少。英伟达的CUDA通用图形处理单元(GPGPU)架构可以极大地有利于单指令多线程(SIMT)风格的计算昂贵的程序。视频编码,在某种程度上,是这样一个应用程序的一个很好的例子,可以看到令人印象深刻的性能提升从CUDA优化。本文详细介绍了将运动JPEG 2000参考编码器移植到CUDA架构的经验。在CUDA框架中讨论了JPEG 2000的每个主要结构/计算单元,并在需要的地方提供了结果。我们的实验结果表明,基于CUDA的实现比CPU上的原始实现快20.7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信