The Hypergeometric Function

Moseley Typist, E. Peters
{"title":"The Hypergeometric Function","authors":"Moseley Typist, E. Peters","doi":"10.1201/9781439864548-61","DOIUrl":null,"url":null,"abstract":"Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)","PeriodicalId":125547,"journal":{"name":"A Course of Modern Analysis","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"A Course of Modern Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781439864548-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Notes from the “Conformal Field Theory and Operator Algebras workshop,” August 2010, Oregon. Want to relate Fμ and Gμ after analytic continuation. Writing Fμs in terms of Gνs – coefficients are ”transport coefficients.” (1) Hypergeometric function/equation (2) Compute transport coefficients for the “Basic ODE” Definition. Gauss’s hypergeometric equation: second order ODE with 3 regular singular points {0, 1,∞}: z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. What’s cool about this are its solutions, built from 2F1 (a, b; c; z) = Σn≥0 (a)n(b)n (c)n z n! with (a)n := a(a+ 1) · · · (a+ n− 1). Rewrite differential equation as F (z) = ( A z + B 1− z )F (z)
超几何函数
“共形场论与算子代数研讨会”笔记,2010年8月,俄勒冈。想要在解析延拓之后将Fμ和Gμ联系起来。把Fμs写成g μs系数就是“输运系数”。(1)超几何函数/方程(2)计算“基本ODE”定义的传输系数。高斯超几何方程:具有3个正则奇点{0,1,∞}的二阶ODE: z(1−z)f ' ' + [c−(1 + a+ b)z]f ' - abf = 0。最酷的是它的解,由2F1 (a, b)c;Z) = Σn≥0 (a)n(b)n (c)n Z n!(a)n = a(a+ 1)···(a+ n - 1)。将微分方程改写为F (z) = (a z + b1 - z) F (z)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信