{"title":"mTrack: High-Precision Passive Tracking Using Millimeter Wave Radios","authors":"Teng Wei, Xinyu Zhang","doi":"10.1145/2789168.2790113","DOIUrl":null,"url":null,"abstract":"Radio-based passive-object sensing can enable a new form of pervasive user-computer interface. Prior work has employed various wireless signal features to sense objects under a set of predefined, coarse motion patterns. But an operational UI, like a trackpad, often needs to identify fine-grained, arbitrary motion. This paper explores the feasibility of tracking a passive writing object (e.g., pen) at sub-centimeter precision. We approach this goal through a practical design, mTrack, which uses highly-directional 60 GHz millimeter-wave radios as key enabling technology. mTrack runs a discrete beam scanning mechanism to pinpoint the object's initial location, and tracks its trajectory using a signal-phase based model. In addition, mTrack incorporates novel mechanisms to suppress interference from background reflections, taking advantage of the short wavelength of 60 GHz signals. We prototype mTrack and evaluate its performance on a 60 GHz reconfigurable radio platform. Experimental results demonstrate that mTrack can locate/track a pen with 90-percentile error below 8 mm, enabling new applications such as wireless transcription and virtual trackpad.","PeriodicalId":424497,"journal":{"name":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"239","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789168.2790113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 239
Abstract
Radio-based passive-object sensing can enable a new form of pervasive user-computer interface. Prior work has employed various wireless signal features to sense objects under a set of predefined, coarse motion patterns. But an operational UI, like a trackpad, often needs to identify fine-grained, arbitrary motion. This paper explores the feasibility of tracking a passive writing object (e.g., pen) at sub-centimeter precision. We approach this goal through a practical design, mTrack, which uses highly-directional 60 GHz millimeter-wave radios as key enabling technology. mTrack runs a discrete beam scanning mechanism to pinpoint the object's initial location, and tracks its trajectory using a signal-phase based model. In addition, mTrack incorporates novel mechanisms to suppress interference from background reflections, taking advantage of the short wavelength of 60 GHz signals. We prototype mTrack and evaluate its performance on a 60 GHz reconfigurable radio platform. Experimental results demonstrate that mTrack can locate/track a pen with 90-percentile error below 8 mm, enabling new applications such as wireless transcription and virtual trackpad.