Efficient data streaming with on-chip accelerators: Opportunities and challenges

Rui Hou, Lixin Zhang, Michael C. Huang, Kun Wang, H. Franke, Y. Ge, Xiaotao Chang
{"title":"Efficient data streaming with on-chip accelerators: Opportunities and challenges","authors":"Rui Hou, Lixin Zhang, Michael C. Huang, Kun Wang, H. Franke, Y. Ge, Xiaotao Chang","doi":"10.1109/HPCA.2011.5749739","DOIUrl":null,"url":null,"abstract":"The transistor density of microprocessors continues to increase as technology scales. Microprocessors designers have taken advantage of the increased transistors by integrating a significant number of cores onto a single die. However, a large number of cores are met with diminishing returns due to software and hardware scalability issues and hence designers have started integrating on-chip special-purpose logic units (i.e., accelerators) that were previously available as PCI-attached units. It is anticipated that more accelerators will be integrated on-chip due to the increasing abundance of transistors and the fact that not all logic can be powered at all times due to power budget limits. Thus, on-chip accelerator architectures deserve more attention from the research community. There is a wide spectrum of research opportunities for design and optimization of accelerators. This paper attempts to bring out some insights by studying the data access streams of on-chip accelerators that hopefully foster some future research in this area. Specifically, this paper uses a few simple case studies to show some of the common characteristics of the data streams introduced by on-chip accelerators, discusses challenges and opportunities in exploiting these characteristics to optimize the power and performance of accelerators, and then analyzes the effectiveness of some simple optimizing extensions proposed.","PeriodicalId":126976,"journal":{"name":"2011 IEEE 17th International Symposium on High Performance Computer Architecture","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 17th International Symposium on High Performance Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2011.5749739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The transistor density of microprocessors continues to increase as technology scales. Microprocessors designers have taken advantage of the increased transistors by integrating a significant number of cores onto a single die. However, a large number of cores are met with diminishing returns due to software and hardware scalability issues and hence designers have started integrating on-chip special-purpose logic units (i.e., accelerators) that were previously available as PCI-attached units. It is anticipated that more accelerators will be integrated on-chip due to the increasing abundance of transistors and the fact that not all logic can be powered at all times due to power budget limits. Thus, on-chip accelerator architectures deserve more attention from the research community. There is a wide spectrum of research opportunities for design and optimization of accelerators. This paper attempts to bring out some insights by studying the data access streams of on-chip accelerators that hopefully foster some future research in this area. Specifically, this paper uses a few simple case studies to show some of the common characteristics of the data streams introduced by on-chip accelerators, discusses challenges and opportunities in exploiting these characteristics to optimize the power and performance of accelerators, and then analyzes the effectiveness of some simple optimizing extensions proposed.
片上加速器的高效数据流:机遇与挑战
微处理器的晶体管密度随着技术的发展而不断增加。微处理器设计者通过将大量的核心集成到单个芯片上,充分利用了晶体管的增加。然而,由于软件和硬件的可伸缩性问题,大量的内核的收益递减,因此设计人员已经开始集成芯片上的专用逻辑单元(即加速器),这些单元以前是作为pci附加单元提供的。由于晶体管越来越多,而且由于功率预算限制,并非所有逻辑都可以随时供电,因此预计将有更多的加速器集成在芯片上。因此,片上加速器架构值得研究界更多的关注。加速器的设计和优化有广泛的研究机会。本文试图通过研究片上加速器的数据访问流来提出一些见解,希望能促进该领域的一些未来研究。具体来说,本文通过几个简单的案例研究,展示了片上加速器引入的数据流的一些共同特征,讨论了利用这些特征来优化加速器功率和性能的挑战和机遇,然后分析了一些简单的优化扩展的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信