{"title":"APP Convolutional Decoding with Transition-Based Systematic Channel Estimation","authors":"Linda M. Davis","doi":"10.1109/AUSCTW.2006.1625266","DOIUrl":null,"url":null,"abstract":"This paper presents a novel formulation for a posteriori probability (APP) decoding of systematic convolutional codes. The convolutional encoder and decoder are constructed to enable transition-based channel estimates to be embedded into the APP calculations. The result is joint channel estimation and decoding. The new decoder is targeted to systematic codes in flat-fading environments although the formulation may be extended for frequency-selective channels or even non-systematic codes with the penalty of additional complexity. In contrast to per-survivor processing for Viterbi decoding, the approach here does not rely on tentative decisions from survivor paths, channel estimation filter coefficients can be pre-calculated, and the APP decoder delivers soft decisions.","PeriodicalId":206040,"journal":{"name":"2006 Australian Communications Theory Workshop","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Australian Communications Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUSCTW.2006.1625266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a novel formulation for a posteriori probability (APP) decoding of systematic convolutional codes. The convolutional encoder and decoder are constructed to enable transition-based channel estimates to be embedded into the APP calculations. The result is joint channel estimation and decoding. The new decoder is targeted to systematic codes in flat-fading environments although the formulation may be extended for frequency-selective channels or even non-systematic codes with the penalty of additional complexity. In contrast to per-survivor processing for Viterbi decoding, the approach here does not rely on tentative decisions from survivor paths, channel estimation filter coefficients can be pre-calculated, and the APP decoder delivers soft decisions.