A note on computing system radii for Galerkin approximations of elastic systems

E. F. Berdaguer, J. Burns, G.H. Piechl, Ricardo Peña
{"title":"A note on computing system radii for Galerkin approximations of elastic systems","authors":"E. F. Berdaguer, J. Burns, G.H. Piechl, Ricardo Peña","doi":"10.1109/CDC.1990.203537","DOIUrl":null,"url":null,"abstract":"Finite element and other Galerkin approximations often used to construct finite dimensional systems for control design are discussed. These methods produce systems with very special structure and this structure can be exploited in developing computational algorithms. A considerable portion of numerical linear algebra is devoted to numerical methods for systems involving banded, sparse, or block diagonal matrices. However, most numerical algorithms currently used in control design do not take advantage of the special structure that results from approximating infinite dimensional systems by Galerkin models. The authors discuss the problem of computing system radii (e.g., controllability, stabilizability, observability, and detectability margins) for finite element approximations of elastic systems. The simple one dimensional wave equation is used to illustrate the basic ideas.<<ETX>>","PeriodicalId":287089,"journal":{"name":"29th IEEE Conference on Decision and Control","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1990.203537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Finite element and other Galerkin approximations often used to construct finite dimensional systems for control design are discussed. These methods produce systems with very special structure and this structure can be exploited in developing computational algorithms. A considerable portion of numerical linear algebra is devoted to numerical methods for systems involving banded, sparse, or block diagonal matrices. However, most numerical algorithms currently used in control design do not take advantage of the special structure that results from approximating infinite dimensional systems by Galerkin models. The authors discuss the problem of computing system radii (e.g., controllability, stabilizability, observability, and detectability margins) for finite element approximations of elastic systems. The simple one dimensional wave equation is used to illustrate the basic ideas.<>
弹性系统伽辽金近似的系统半径计算注记
讨论了用于构造控制设计的有限维系统的有限元和其他伽辽金近似。这些方法产生的系统具有非常特殊的结构,这种结构可以用于开发计算算法。数值线性代数中相当大的一部分致力于涉及带状、稀疏或块对角矩阵的系统的数值方法。然而,目前在控制设计中使用的大多数数值算法都没有利用由伽辽金模型近似无限维系统所产生的特殊结构。讨论了弹性系统有限元近似的系统半径计算问题(如可控性、稳定性、可观测性和可探测性裕度)。用简单的一维波动方程来说明基本思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信