LSTM-Based Ransomware Detection Using API Call Information

Kohei Tsunewaki, Tomotaka Kimura, Jun Cheng
{"title":"LSTM-Based Ransomware Detection Using API Call Information","authors":"Kohei Tsunewaki, Tomotaka Kimura, Jun Cheng","doi":"10.1109/ICCE-Taiwan55306.2022.9869122","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a ransomware detection method based on API IDs and call intervals. In the proposed method, to detect ransomware, when each API call occurs, we input both the API ID and the call interval from the previous call into an LSTM (Long Short Term Memory). By inputting the API IDs and call intervals into LSTM, we can learn the characteristics of the time series change of API calls in the ransomware. Through the experiments using an original dataset, we demonstrated that the accuracy of our proposed method was high and the characteristic learning of the call interval was useful for detecting ransomware.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a ransomware detection method based on API IDs and call intervals. In the proposed method, to detect ransomware, when each API call occurs, we input both the API ID and the call interval from the previous call into an LSTM (Long Short Term Memory). By inputting the API IDs and call intervals into LSTM, we can learn the characteristics of the time series change of API calls in the ransomware. Through the experiments using an original dataset, we demonstrated that the accuracy of our proposed method was high and the characteristic learning of the call interval was useful for detecting ransomware.
基于lstm的API调用信息的勒索软件检测
本文提出了一种基于API id和调用间隔的勒索软件检测方法。在提出的方法中,为了检测勒索软件,当每个API调用发生时,我们将API ID和前一次调用的调用间隔输入到LSTM(长短期记忆)中。通过将API id和调用间隔输入到LSTM中,我们可以了解勒索软件中API调用的时间序列变化特征。通过使用原始数据集的实验,我们证明了我们提出的方法的准确性很高,并且调用间隔的特征学习对检测勒索软件是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信