The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference

N. Basturk, S. Grassi, Lennart F. Hoogerheide, A. Opschoor, H. V. Dijk
{"title":"The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference","authors":"N. Basturk, S. Grassi, Lennart F. Hoogerheide, A. Opschoor, H. V. Dijk","doi":"10.2139/ssrn.2587011","DOIUrl":null,"url":null,"abstract":"This paper presents the R-package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture of Student-t densities as approximating density. In the first stage a mixture of Student-t densities is fitted to the target using an expectation maximization (EM) algorithm where each step of the optimization procedure is weighted using importance sampling. In the second stage this mixture density is a candidate density for efficient and robust application of importance sampling or the Metropolis-Hastings (MH) method to estimate properties of the target distribution. The package enables Bayesian inference and prediction on model parameters and probabilities, in particular, for models where densities have multi-modal or other non-elliptical shapes like curved ridges. These shapes occur in research topics in several scientific fields. For instance, analysis of DNA data in bio-informatics, obtaining loans in the banking sector by heterogeneous groups in financial economics and analysis of education's effect on earned income in labor economics. The package MitISEM provides also an extended algorithm, 'sequential MitISEM', which substantially decreases computation time when the target density has to be approximated for increasing data samples.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2587011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents the R-package MitISEM (mixture of t by importance sampling weighted expectation maximization) which provides an automatic and flexible two-stage method to approximate a non-elliptical target density kernel -- typically a posterior density kernel -- using an adaptive mixture of Student-t densities as approximating density. In the first stage a mixture of Student-t densities is fitted to the target using an expectation maximization (EM) algorithm where each step of the optimization procedure is weighted using importance sampling. In the second stage this mixture density is a candidate density for efficient and robust application of importance sampling or the Metropolis-Hastings (MH) method to estimate properties of the target distribution. The package enables Bayesian inference and prediction on model parameters and probabilities, in particular, for models where densities have multi-modal or other non-elliptical shapes like curved ridges. These shapes occur in research topics in several scientific fields. For instance, analysis of DNA data in bio-informatics, obtaining loans in the banking sector by heterogeneous groups in financial economics and analysis of education's effect on earned income in labor economics. The package MitISEM provides also an extended algorithm, 'sequential MitISEM', which substantially decreases computation time when the target density has to be approximated for increasing data samples.
R软件包:贝叶斯推理的高效鲁棒仿真程序
本文提出了R-package MitISEM(通过重要抽样加权期望最大化混合t),它提供了一种自动和灵活的两阶段方法来近似非椭圆目标密度核-通常是后验密度核-使用自适应混合的Student-t密度作为近似密度。在第一阶段,使用期望最大化(EM)算法将混合的Student-t密度拟合到目标上,其中优化过程的每个步骤都使用重要抽样进行加权。在第二阶段,该混合密度是重要抽样或Metropolis-Hastings (MH)方法的有效和稳健应用的候选密度,以估计目标分布的性质。该软件包能够对模型参数和概率进行贝叶斯推理和预测,特别是对于密度具有多模态或其他非椭圆形状(如弯曲脊)的模型。这些形状出现在几个科学领域的研究课题中。例如,生物信息学中的DNA数据分析,金融经济学中的异质群体在银行部门获得贷款,劳动经济学中的教育对劳动收入的影响分析。MitISEM包还提供了一种扩展算法,“顺序MitISEM”,当必须近似目标密度以增加数据样本时,该算法大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信