On the existence of minimal hypersurfaces with arbitrarily large area and Morse index

Yangyang Li
{"title":"On the existence of minimal hypersurfaces with arbitrarily large area and Morse index","authors":"Yangyang Li","doi":"10.2140/gt.2022.26.2713","DOIUrl":null,"url":null,"abstract":"We show that a bumpy closed Riemannian manifold $(M^{n+1}, g)$ $(3 \\leq n+1 \\leq 7)$ admits a sequence of connected closed embedded two-sided minimal hypersurfaces whose areas and Morse indices both tend to infinity. This improves a previous result by O. Chodosh and C. Mantoulidis on connected minimal hypersurfaces with arbitrarily large area.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.2713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We show that a bumpy closed Riemannian manifold $(M^{n+1}, g)$ $(3 \leq n+1 \leq 7)$ admits a sequence of connected closed embedded two-sided minimal hypersurfaces whose areas and Morse indices both tend to infinity. This improves a previous result by O. Chodosh and C. Mantoulidis on connected minimal hypersurfaces with arbitrarily large area.
关于任意大面积和莫尔斯指数的极小超曲面的存在性
我们证明了凹凸不平的封闭黎曼流形$(M^{n+1}, g)$$(3 \leq n+1 \leq 7)$允许一系列连通的封闭嵌入的双面极小超曲面,其面积和摩尔斯指数都趋于无穷。这改进了O. Chodosh和C. Mantoulidis先前关于任意大面积连通极小超曲面的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信