CLUMOC: Multiple Motion Estimation by Cluster Motion Consensus

Yinan Yu, Weiqiang Ren, Yongzhen Huang, Kaiqi Huang, T. Tan
{"title":"CLUMOC: Multiple Motion Estimation by Cluster Motion Consensus","authors":"Yinan Yu, Weiqiang Ren, Yongzhen Huang, Kaiqi Huang, T. Tan","doi":"10.1109/AVSS.2012.19","DOIUrl":null,"url":null,"abstract":"In this paper, we present techniques for robust multiple motions estimation based on dual consensus via clustering in both the image spatial space and the motion parameter space. Starting from traditional Random Samples Consensus algorithm, we novelly propose the CLUster MOtion Consensus (CLUMOC) to extract robust motions. The proposed algorithm has two advantages: (1), instead of random samples, the CLUMOC employs clustering in initial sample selection, which can remove outliers from correct pairs of motion, (2), CLUMOC automatically decides the number of motions, by employing competition among motion and samples, that each motion needs to compete for matching pairs and each pair of matching competes for motions. The experimental results show that the proposed method is effective and efficient under various situations.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present techniques for robust multiple motions estimation based on dual consensus via clustering in both the image spatial space and the motion parameter space. Starting from traditional Random Samples Consensus algorithm, we novelly propose the CLUster MOtion Consensus (CLUMOC) to extract robust motions. The proposed algorithm has two advantages: (1), instead of random samples, the CLUMOC employs clustering in initial sample selection, which can remove outliers from correct pairs of motion, (2), CLUMOC automatically decides the number of motions, by employing competition among motion and samples, that each motion needs to compete for matching pairs and each pair of matching competes for motions. The experimental results show that the proposed method is effective and efficient under various situations.
CLUMOC:基于聚类运动一致性的多运动估计
本文提出了基于图像空间和运动参数空间双共识聚类的鲁棒多运动估计技术。在传统随机样本一致性算法的基础上,提出了基于聚类运动一致性(CLUMOC)的鲁棒运动提取算法。本文提出的算法有两个优点:(1)CLUMOC在初始样本选择中采用聚类方法,而不是随机样本,可以从正确的运动对中去除异常值;(2)CLUMOC通过运动和样本之间的竞争,自动决定运动的数量,每个运动需要竞争匹配对,每个匹配对竞争运动。实验结果表明,该方法在各种情况下都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信