Mitosis Detection Using Image Segmentation and Object Detection

Nairit Banerjee, Anmol Singh Sethi, Manavdeep Singh, G. S. Anagh, Badnena Svvr Upendra, A. Krohn-Grimberghe, Ranjana Vyas
{"title":"Mitosis Detection Using Image Segmentation and Object Detection","authors":"Nairit Banerjee, Anmol Singh Sethi, Manavdeep Singh, G. S. Anagh, Badnena Svvr Upendra, A. Krohn-Grimberghe, Ranjana Vyas","doi":"10.1109/CICT48419.2019.9066180","DOIUrl":null,"url":null,"abstract":"The World Health Organisation(WHO) identifies that in women, the second most cancer deaths are caused by Breast cancer[1]. This paper presents various approaches for Mitosis detection on publicly available MITOS data set and DSB (Data Science Bowl). The process involves using a U-Net architecture consisting of convolution and deconvolution layers to perform the image segmentation. On the segmented image, YOLO algorithm is used to perform the object detection, thus forming bounding boxes around the nuclei. The next task involves the classification of nuclei into either mitotic or amitotic which is achieved with help of one class SVM. The results achieved on the data sets were able to prove that the process followed got good results for mitosis detection on histology images.","PeriodicalId":234540,"journal":{"name":"2019 IEEE Conference on Information and Communication Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICT48419.2019.9066180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The World Health Organisation(WHO) identifies that in women, the second most cancer deaths are caused by Breast cancer[1]. This paper presents various approaches for Mitosis detection on publicly available MITOS data set and DSB (Data Science Bowl). The process involves using a U-Net architecture consisting of convolution and deconvolution layers to perform the image segmentation. On the segmented image, YOLO algorithm is used to perform the object detection, thus forming bounding boxes around the nuclei. The next task involves the classification of nuclei into either mitotic or amitotic which is achieved with help of one class SVM. The results achieved on the data sets were able to prove that the process followed got good results for mitosis detection on histology images.
利用图像分割和目标检测进行有丝分裂检测
世界卫生组织(WHO)确定,在女性中,乳腺癌是第二大癌症死亡原因[1]。本文介绍了在公开可用的MITOS数据集和DSB(数据科学碗)上进行有丝分裂检测的各种方法。该过程涉及使用由卷积层和反卷积层组成的U-Net架构来执行图像分割。在分割后的图像上,使用YOLO算法进行目标检测,从而在核周围形成包围框。下一个任务是利用一类支持向量机将细胞核分类为有丝分裂或无丝分裂。在数据集上取得的结果能够证明,接下来的过程对组织学图像的有丝分裂检测取得了良好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信