Keyframe extraction using AdaBoost

Jing Yuan, Wei Wang, Wei Yang, Maojun Zhang
{"title":"Keyframe extraction using AdaBoost","authors":"Jing Yuan, Wei Wang, Wei Yang, Maojun Zhang","doi":"10.1109/SPAC.2014.6982663","DOIUrl":null,"url":null,"abstract":"An approach for keyframe extraction using AdaBoost is proposed which is based on foreground detection. The aim of this approach is to extract keyframes from sequences of specific vehicle images of lane vehicle surveillance video. This method utilizes integral channel features and the area feature as the image feature descriptor, combined with training an AdaBoost classifier. The experimental results on real-road test video show that the algorithm presented in this paper effectively selects the most distinct and clearest image for a sequence of vehicle images which begins counting when a motional vehicle enters into the surveillance area and ends when it leaves. Compared with other methods, it has increased the effectiveness and precision for keyframe extraction of lane vehicle surveillance video and achieves more effective compression of video analytical data for lane vehicle surveillance.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

An approach for keyframe extraction using AdaBoost is proposed which is based on foreground detection. The aim of this approach is to extract keyframes from sequences of specific vehicle images of lane vehicle surveillance video. This method utilizes integral channel features and the area feature as the image feature descriptor, combined with training an AdaBoost classifier. The experimental results on real-road test video show that the algorithm presented in this paper effectively selects the most distinct and clearest image for a sequence of vehicle images which begins counting when a motional vehicle enters into the surveillance area and ends when it leaves. Compared with other methods, it has increased the effectiveness and precision for keyframe extraction of lane vehicle surveillance video and achieves more effective compression of video analytical data for lane vehicle surveillance.
关键帧提取使用AdaBoost
提出了一种基于前景检测的AdaBoost关键帧提取方法。该方法的目的是从车道车辆监控视频的特定车辆图像序列中提取关键帧。该方法利用积分通道特征和区域特征作为图像特征描述符,结合AdaBoost分类器的训练。在真实道路测试视频上的实验结果表明,本文算法能够有效地从运动车辆进入监控区域开始计数到离开监控区域结束计数的一系列车辆图像中选出最清晰、最清晰的图像。与其他方法相比,提高了车道车辆监控视频关键帧提取的有效性和精度,实现了车道车辆监控视频分析数据更有效的压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信