On a sum over primitive sequences of finite degree

Ilias Laib, Nadir Rezzoug
{"title":"On a sum over primitive sequences of finite degree","authors":"Ilias Laib, Nadir Rezzoug","doi":"10.20948/mathmontis-2022-53-4","DOIUrl":null,"url":null,"abstract":"A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős’s analogous conjecture for translated sums is not satisfied.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2022-53-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A sequence of strictly positive integers is said to be primitive if none of its terms divides the others and is said to be homogeneous if the number of prime factors of its terms counted with multiplicity is constant. In this paper, we construct primitive sequences A of degree d, for which the Erdős’s analogous conjecture for translated sums is not satisfied.
有限次原始序列的和
如果一个严格正整数序列的每一项都不能被其他项相除,我们就说它是原始的;如果用多重性来计算它的每一项的素数因子的数目是恒定的,我们就说它是齐次的。本文构造了阶为d的原始序列A,对其平移和的Erdős类似猜想不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信