Automatic, Dimensional and Continuous Emotion Recognition

H. Gunes, M. Pantic
{"title":"Automatic, Dimensional and Continuous Emotion Recognition","authors":"H. Gunes, M. Pantic","doi":"10.4018/jse.2010101605","DOIUrl":null,"url":null,"abstract":"Recognition and analysis of human emotions have attracted a lot of interest in the past two decades and have been researched extensively in neuroscience, psychology, cognitive sciences, and computer sciences. Most of the past research in machine analysis of human emotion has focused on recognition of prototypic expressions of six basic emotions based on data that has been posed on demand and acquired in laboratory settings. More recently, there has been a shift toward recognition of affective displays recorded in naturalistic settings as driven by real world applications. This shift in affective computing research is aimed toward subtle, continuous, and context-specific interpretations of affective displays recorded in real-world settings and toward combining multiple modalities for analysis and recognition of human emotion. Accordingly, this article explores recent advances in dimensional and continuous affect modeling, sensing, and automatic recognition from visual, audio, tactile, and brain-wave modalities.","PeriodicalId":272943,"journal":{"name":"Int. J. Synth. Emot.","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"414","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Synth. Emot.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jse.2010101605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 414

Abstract

Recognition and analysis of human emotions have attracted a lot of interest in the past two decades and have been researched extensively in neuroscience, psychology, cognitive sciences, and computer sciences. Most of the past research in machine analysis of human emotion has focused on recognition of prototypic expressions of six basic emotions based on data that has been posed on demand and acquired in laboratory settings. More recently, there has been a shift toward recognition of affective displays recorded in naturalistic settings as driven by real world applications. This shift in affective computing research is aimed toward subtle, continuous, and context-specific interpretations of affective displays recorded in real-world settings and toward combining multiple modalities for analysis and recognition of human emotion. Accordingly, this article explores recent advances in dimensional and continuous affect modeling, sensing, and automatic recognition from visual, audio, tactile, and brain-wave modalities.
自动,维度和连续的情绪识别
在过去的二十年里,人类情感的识别和分析引起了人们的极大兴趣,并在神经科学、心理学、认知科学和计算机科学中得到了广泛的研究。过去大多数关于人类情感的机器分析研究都集中在识别六种基本情绪的原型表达上,这些表达是基于实验室环境中根据需求提出和获得的数据。最近,在现实世界的应用驱动下,人们开始转向对自然环境中记录的情感表现的识别。情感计算研究的这种转变旨在对现实世界中记录的情感表现进行微妙、连续和特定情境的解释,并结合多种模式来分析和识别人类情感。因此,本文从视觉、听觉、触觉和脑电波的角度探讨了维度和连续影响建模、传感和自动识别的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信