Mining Self-similarity in Time Series

Meina Song, Xiaosu Zhan, Junde Song
{"title":"Mining Self-similarity in Time Series","authors":"Meina Song, Xiaosu Zhan, Junde Song","doi":"10.5220/0002497501310136","DOIUrl":null,"url":null,"abstract":"Self-similarity can successfully characterize and forecast intricate, non-periodic and chaos time series avoiding the limitation of traditional methods on LRD (Long-Range Dependence). The potential principals will be found and the future unknown time series will be forecasted through foregoing training. Therefore it is important to mine the LRD by self-similarity analysis. In this paper, mining self-similarity of time series is introduced. And the practical value can be found from two cases study respectively for seasonvariable trend forecast and network traffic.","PeriodicalId":217890,"journal":{"name":"Computer Supported Acitivity Coordination","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Supported Acitivity Coordination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002497501310136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-similarity can successfully characterize and forecast intricate, non-periodic and chaos time series avoiding the limitation of traditional methods on LRD (Long-Range Dependence). The potential principals will be found and the future unknown time series will be forecasted through foregoing training. Therefore it is important to mine the LRD by self-similarity analysis. In this paper, mining self-similarity of time series is introduced. And the practical value can be found from two cases study respectively for seasonvariable trend forecast and network traffic.
挖掘时间序列中的自相似度
自相似可以成功地描述和预测复杂的、非周期的和混沌的时间序列,避免了传统方法对LRD (long - term Dependence)的限制。通过上述训练,发现潜在的主体,并预测未来未知的时间序列。因此,通过自相似分析来挖掘LRD具有重要的意义。本文介绍了时间序列的自相似度挖掘方法。并分别对季节变量趋势预测和网络流量进行了实例分析,发现了该方法的实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信