Joint Chinese word segmentation and punctuation prediction using deep recurrent neural network for social media data

Kui Wu, Xuancong Wang, Nina Zhou, AiTi Aw, Haizhou Li
{"title":"Joint Chinese word segmentation and punctuation prediction using deep recurrent neural network for social media data","authors":"Kui Wu, Xuancong Wang, Nina Zhou, AiTi Aw, Haizhou Li","doi":"10.1109/IALP.2015.7451527","DOIUrl":null,"url":null,"abstract":"In this work, we propose to jointly perform Chinese word segmentation (CWS) and punctuation prediction (PU) in a unified framework using deep recurrent neural network (DRNN). We further perform a comparative study among the joint frameworks, the isolated prediction and the pipeline methods that link the two tasks sequentially, on a social media corpus. Our experimental results show that joint models improve performance of CWS and affect PU marginally. We also study the effects of CWS and PU on Chinese-to-English machine translation (MT) quality by evaluating on a parallel social media corpus. It is shown that joint models are superior to the isolated prediction and the pipeline approaches.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we propose to jointly perform Chinese word segmentation (CWS) and punctuation prediction (PU) in a unified framework using deep recurrent neural network (DRNN). We further perform a comparative study among the joint frameworks, the isolated prediction and the pipeline methods that link the two tasks sequentially, on a social media corpus. Our experimental results show that joint models improve performance of CWS and affect PU marginally. We also study the effects of CWS and PU on Chinese-to-English machine translation (MT) quality by evaluating on a parallel social media corpus. It is shown that joint models are superior to the isolated prediction and the pipeline approaches.
基于深度递归神经网络的中文分词和标点符号联合预测
在这项工作中,我们提出在一个统一的框架中使用深度递归神经网络(DRNN)联合执行中文分词(CWS)和标点符号预测(PU)。我们进一步在一个社交媒体语料库上对联合框架、孤立预测和顺序连接两个任务的管道方法进行了比较研究。我们的实验结果表明,接缝模型提高了CWS的性能,但对PU的影响很小。我们还通过在一个平行的社交媒体语料库上评估CWS和PU对汉英机器翻译质量的影响。结果表明,联合模型优于孤立预测和管道方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信