The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism

B. Poonen, Kaloyan Slavov
{"title":"The Exceptional Locus in the Bertini Irreducibility Theorem for a Morphism","authors":"B. Poonen, Kaloyan Slavov","doi":"10.1093/imrn/rnaa182","DOIUrl":null,"url":null,"abstract":"We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $\\phi \\colon X \\to \\mathbb{P}^n$ such that $X$ is geometrically irreducible and the nonempty fibers of $\\phi$ all have the same dimension, the locus of hyperplanes $H$ such that $\\phi^{-1} H$ is not geometrically irreducible has dimension at most $\\operatorname{codim} \\phi(X)+1$. We give an application to monodromy groups above hyperplane sections.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imrn/rnaa182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We introduce a novel approach to Bertini irreducibility theorems over an arbitrary field, based on random hyperplane slicing over a finite field. Extending a result of Benoist, we prove that for a morphism $\phi \colon X \to \mathbb{P}^n$ such that $X$ is geometrically irreducible and the nonempty fibers of $\phi$ all have the same dimension, the locus of hyperplanes $H$ such that $\phi^{-1} H$ is not geometrically irreducible has dimension at most $\operatorname{codim} \phi(X)+1$. We give an application to monodromy groups above hyperplane sections.
一类态射Bertini不可约定理中的例外轨迹
基于有限域上的随机超平面切片,提出了一种求解任意域上Bertini不可约定理的新方法。推广Benoist的结果,证明了对于$\phi \冒号X \到$ mathbb{P}^n$的态射使得$X$是几何上不可约的并且$\phi$的非空纤维都具有相同的维数,使得$\phi^{-1} H$不是几何上不可约的超平面轨迹$H$的维数不超过$\operatorname{codim} \phi(X)+1$。给出了超平面截面上单群的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信