NXTGeUH: LoRaWAN based NEXT Generation Ubiquitous Healthcare System for Vital Signs Monitoring & Falls Detection

Warish D. Patel, Sharnil Pandya, Baki Koyuncu, Bhupendra Ramani, S. Bhaskar, H. Ghayvat
{"title":"NXTGeUH: LoRaWAN based NEXT Generation Ubiquitous Healthcare System for Vital Signs Monitoring & Falls Detection","authors":"Warish D. Patel, Sharnil Pandya, Baki Koyuncu, Bhupendra Ramani, S. Bhaskar, H. Ghayvat","doi":"10.1109/PUNECON.2018.8745431","DOIUrl":null,"url":null,"abstract":"The challenge for deployment of low-cost and high-speed ubiquitous Smart Health services has prompted us to propose new framework design for providing excellent healthcare to humankind. So, there exists a very high demand for developing an Internet of Medical Things (IoMT) based Ubiquitous Real-Time LoRa (Long Range) Healthcare System using Convolutional Neural Networks (CNN) to agree if a sequence of frames contains a person falling. To model the video motion and make the system scenario sovereign, in this research, we use optical flow images as input to the networks. Right now hospital and home falls are a noteworthy medical services concern overall on account of the aging populace. Current observational information, vital signs and falls history give the necessary data identified with the patient's physiology, and movement information give an additional utensil in falls risk evaluation. The proposed framework utilizes Real-Time Vital signs monitoring and emergency alert message to caregivers or doctors. In this context, we introduce \"LoRaWAN based Next Generation Ubiquitous Healthcare System (NXTGeUH), an intelligent middleware platform. In addition, this proposed method is evaluated with different public hospital datasets achieving the state-of-the-art outcomes in all aspects.","PeriodicalId":166677,"journal":{"name":"2018 IEEE Punecon","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Punecon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PUNECON.2018.8745431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The challenge for deployment of low-cost and high-speed ubiquitous Smart Health services has prompted us to propose new framework design for providing excellent healthcare to humankind. So, there exists a very high demand for developing an Internet of Medical Things (IoMT) based Ubiquitous Real-Time LoRa (Long Range) Healthcare System using Convolutional Neural Networks (CNN) to agree if a sequence of frames contains a person falling. To model the video motion and make the system scenario sovereign, in this research, we use optical flow images as input to the networks. Right now hospital and home falls are a noteworthy medical services concern overall on account of the aging populace. Current observational information, vital signs and falls history give the necessary data identified with the patient's physiology, and movement information give an additional utensil in falls risk evaluation. The proposed framework utilizes Real-Time Vital signs monitoring and emergency alert message to caregivers or doctors. In this context, we introduce "LoRaWAN based Next Generation Ubiquitous Healthcare System (NXTGeUH), an intelligent middleware platform. In addition, this proposed method is evaluated with different public hospital datasets achieving the state-of-the-art outcomes in all aspects.
NXTGeUH:基于LoRaWAN的下一代泛在医疗系统,用于生命体征监测和跌倒检测
部署低成本、高速、无处不在的智能健康服务的挑战促使我们提出新的框架设计,为人类提供卓越的医疗保健。因此,开发基于医疗物联网(IoMT)的无所不在实时LoRa(远程)医疗保健系统的需求非常高,该系统使用卷积神经网络(CNN)来识别一系列帧是否包含一个人跌倒。在本研究中,我们使用光流图像作为网络的输入,以模拟视频运动并使系统场景独立。目前,由于人口老龄化,医院和家庭跌倒是一个值得关注的医疗服务问题。当前的观察信息、生命体征和跌倒史提供了与患者生理相关的必要数据,而运动信息为跌倒风险评估提供了额外的工具。拟议的框架利用实时生命体征监测和向护理人员或医生发送紧急警报信息。在此背景下,我们介绍了基于LoRaWAN的下一代泛在医疗保健系统(NXTGeUH),这是一个智能中间件平台。此外,采用不同的公立医院数据集对所提出的方法进行了评估,在各个方面都取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信