Xulong Cao, Yao Huang, Yongdong Huang, Yuanzhan Li, Shen Cai
{"title":"LDAM: line descriptors augmented by attention mechanism","authors":"Xulong Cao, Yao Huang, Yongdong Huang, Yuanzhan Li, Shen Cai","doi":"10.1117/12.2644245","DOIUrl":null,"url":null,"abstract":"Compared with point features, line features can provide more geometric information in vision tasks. Although traditional line descriptor methods have been proposed for a long time, learning-based line descriptor methods still need to be strengthened. Inspired by the message passing mechanism of graph neural networks, we propose a new neural network architecture named LDAM that alternately uses two attention mechanisms to augment line descriptors and extract more line correspondences. Compared with previous methods, our method learns the geometric properties and prior knowledge of images through the mutual aggregation of features between a pair of images. The experiments on real data verify the good performance of LDAM in terms of matching accuracy. Furthermore, LDAM is also robust to viewpoint change or occlusion.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Compared with point features, line features can provide more geometric information in vision tasks. Although traditional line descriptor methods have been proposed for a long time, learning-based line descriptor methods still need to be strengthened. Inspired by the message passing mechanism of graph neural networks, we propose a new neural network architecture named LDAM that alternately uses two attention mechanisms to augment line descriptors and extract more line correspondences. Compared with previous methods, our method learns the geometric properties and prior knowledge of images through the mutual aggregation of features between a pair of images. The experiments on real data verify the good performance of LDAM in terms of matching accuracy. Furthermore, LDAM is also robust to viewpoint change or occlusion.