{"title":"Assessment of self-explaining effect in a large enrolment General Chemistry course","authors":"Adrian Villalta-Cerdas , Santiago Sandi-Urena","doi":"10.1016/j.eq.2015.11.007","DOIUrl":null,"url":null,"abstract":"<div><p>Self-explaining refers to the generation of inferences about causal connections between objects and events for one's own consumption. Self-explaining is amongst the practices of science deemed essential for scientific competence; therefore, a valued learning outcome in itself. Nonetheless, generation of authentic explanations is seldom promoted in college science instruction. This work examined the effect of engagement in self-explaining on conceptual understanding of chemistry. Learning and performance tasks were completed individually in the classroom ecology of a large-enrolment General Chemistry course in the US. The study spanned a period of five semesters including pilot-tests and replications. The self-explaining intervention followed a multi-condition comparison design that used performance on a post-test to assess learning. Students were randomly assigned to the following conditions: reviewing a correct explanation, explaining correct or incorrect answers, explaining agreement with answers produced by others, and explaining their own answers. A cohort of students who underwent standard instruction with no intervention and had prepared for formal examination served as reference. The self-explaining cohorts performed better than the reference group, and in one case was the difference statistically significant. Findings suggest that self-explaining activities support students’ conceptual understanding at least as much as instruction. This study contributes evidence for the self-explaining effect and the ICAP hypothesis in a discipline where no evidence is available. Furthermore, it adds to the relatively little work in self-explaining that has explored naturalistic learning environments. This work supports the incorporation of self-explaining activities in the repertoire of instructional practices for General Chemistry.</p></div>","PeriodicalId":39011,"journal":{"name":"Educacion Quimica","volume":"27 2","pages":"Pages 115-125"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.eq.2015.11.007","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educacion Quimica","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0187893X15000993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
Self-explaining refers to the generation of inferences about causal connections between objects and events for one's own consumption. Self-explaining is amongst the practices of science deemed essential for scientific competence; therefore, a valued learning outcome in itself. Nonetheless, generation of authentic explanations is seldom promoted in college science instruction. This work examined the effect of engagement in self-explaining on conceptual understanding of chemistry. Learning and performance tasks were completed individually in the classroom ecology of a large-enrolment General Chemistry course in the US. The study spanned a period of five semesters including pilot-tests and replications. The self-explaining intervention followed a multi-condition comparison design that used performance on a post-test to assess learning. Students were randomly assigned to the following conditions: reviewing a correct explanation, explaining correct or incorrect answers, explaining agreement with answers produced by others, and explaining their own answers. A cohort of students who underwent standard instruction with no intervention and had prepared for formal examination served as reference. The self-explaining cohorts performed better than the reference group, and in one case was the difference statistically significant. Findings suggest that self-explaining activities support students’ conceptual understanding at least as much as instruction. This study contributes evidence for the self-explaining effect and the ICAP hypothesis in a discipline where no evidence is available. Furthermore, it adds to the relatively little work in self-explaining that has explored naturalistic learning environments. This work supports the incorporation of self-explaining activities in the repertoire of instructional practices for General Chemistry.