MAMBO - Indexing Dead Space to Accelerate Spatial Queries✱

Giannis Evagorou, T. Heinis
{"title":"MAMBO - Indexing Dead Space to Accelerate Spatial Queries✱","authors":"Giannis Evagorou, T. Heinis","doi":"10.1145/3468791.3468804","DOIUrl":null,"url":null,"abstract":"With the increasing size and prevalence of spatial data across applications, efficiently indexing it becomes key. Minimum bounding boxes (MBBs) — i.e., axis-aligned rectangles that minimally enclose an object — used as approximations for complex geometric objects have become crucial for spatial indexes. MBBs succinctly summarize complex spatial objects and thus allow for an efficient filtering stage thanks to faster intersection tests. However, they introduce dead-space, i.e., space that is indexed but contains no spatial objects. Querying dead space gives no result but reads data from disk thus slowing down query execution unnecessarily. In this paper, we propose MaMBo (Meshed MBb), a grid-based data structure to index dead space in addition to an index of the spatial objects. We augment intersection operations of established indexes to consult our data structure while executing queries, thereby avoiding retrieval of unnecessary data from disk, i.e., data which only contains dead space. As our experiments show, we can significantly reduce I/O — the major overhead for disk-resident datasets — by over 50% when using MaMBo with an R-Tree.","PeriodicalId":312773,"journal":{"name":"33rd International Conference on Scientific and Statistical Database Management","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468791.3468804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing size and prevalence of spatial data across applications, efficiently indexing it becomes key. Minimum bounding boxes (MBBs) — i.e., axis-aligned rectangles that minimally enclose an object — used as approximations for complex geometric objects have become crucial for spatial indexes. MBBs succinctly summarize complex spatial objects and thus allow for an efficient filtering stage thanks to faster intersection tests. However, they introduce dead-space, i.e., space that is indexed but contains no spatial objects. Querying dead space gives no result but reads data from disk thus slowing down query execution unnecessarily. In this paper, we propose MaMBo (Meshed MBb), a grid-based data structure to index dead space in addition to an index of the spatial objects. We augment intersection operations of established indexes to consult our data structure while executing queries, thereby avoiding retrieval of unnecessary data from disk, i.e., data which only contains dead space. As our experiments show, we can significantly reduce I/O — the major overhead for disk-resident datasets — by over 50% when using MaMBo with an R-Tree.
MAMBO -索引死空间以加速空间查询
随着应用程序中空间数据的大小和流行程度的增加,有效地对其进行索引成为关键。最小边界框(Minimum bounding box, MBBs)——即最小限度地包围对象的与轴线对齐的矩形——用作复杂几何对象的近似值,对于空间索引来说已经变得至关重要。MBBs简洁地总结了复杂的空间对象,因此由于更快的交叉测试,允许有效的过滤阶段。然而,它们引入了死空间,即索引了但不包含空间对象的空间。查询死空间不会产生结果,而是从磁盘读取数据,因此不必要地减慢了查询的执行速度。在本文中,我们提出了一种基于网格的数据结构MaMBo (Meshed MBb),除了空间对象的索引之外,还可以索引死空间。我们增加已建立索引的交叉操作,以便在执行查询时查询我们的数据结构,从而避免从磁盘检索不必要的数据,即只包含死空间的数据。正如我们的实验所示,当使用带有R-Tree的MaMBo时,我们可以显著减少I/O(磁盘驻留数据集的主要开销)50%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信