New just noticeable coding distortion model for perceptual coding

Shengyang Xu, Mei Yu, G. Jiang, Shuqing Fang
{"title":"New just noticeable coding distortion model for perceptual coding","authors":"Shengyang Xu, Mei Yu, G. Jiang, Shuqing Fang","doi":"10.1109/DMIAF.2016.7574928","DOIUrl":null,"url":null,"abstract":"With the aim of improving the efficiency and perceptual quality in video coding, this paper proposes a novel just-noticeable coding distortion (JNCD) model that considers human visual perception redundancy and unreasonable factors of existing just-noticeable distortion (JND) models in the coding process. First, we design a psycho-physical experiment to analyze the just-noticeable gradient difference (JNGD) and build a JNGD model to filter the gradient components that are imperceptible to human eyes. We use total variation (TV) to decompose an image into a structural image and a textural image, and calculate their gradients. Then, we use JNGD to filter out imperceptible gradient components in each gradient image. Second, human visual sensitivity to different gradient magnitudes is analyzed to model the relationship between the human visual perceptible gradient magnitude and JNCD. Finally, considering the perceived difference of human eye perception in edge, flat, and textural regions of an image, we adjust the JNCD value in each region and establish a JNCD model of the whole image. To verify the efficiency of the proposed JNCD model, we compare it with the classic JND model and test it on the high-efficiency video coding (HEVC) platform. The proposed model has advantages in subjective visual effects, meaning that it is helpful in analysis of human visual perception redundancy and the relevant perceptual video coding.","PeriodicalId":404025,"journal":{"name":"2016 Digital Media Industry & Academic Forum (DMIAF)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Digital Media Industry & Academic Forum (DMIAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMIAF.2016.7574928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the aim of improving the efficiency and perceptual quality in video coding, this paper proposes a novel just-noticeable coding distortion (JNCD) model that considers human visual perception redundancy and unreasonable factors of existing just-noticeable distortion (JND) models in the coding process. First, we design a psycho-physical experiment to analyze the just-noticeable gradient difference (JNGD) and build a JNGD model to filter the gradient components that are imperceptible to human eyes. We use total variation (TV) to decompose an image into a structural image and a textural image, and calculate their gradients. Then, we use JNGD to filter out imperceptible gradient components in each gradient image. Second, human visual sensitivity to different gradient magnitudes is analyzed to model the relationship between the human visual perceptible gradient magnitude and JNCD. Finally, considering the perceived difference of human eye perception in edge, flat, and textural regions of an image, we adjust the JNCD value in each region and establish a JNCD model of the whole image. To verify the efficiency of the proposed JNCD model, we compare it with the classic JND model and test it on the high-efficiency video coding (HEVC) platform. The proposed model has advantages in subjective visual effects, meaning that it is helpful in analysis of human visual perception redundancy and the relevant perceptual video coding.
一种新的感知编码的不明显编码失真模型
为了提高视频编码的效率和感知质量,本文提出了一种新的just- visible coding distortion (JNCD)模型,该模型考虑了人类视觉感知冗余和现有just- visible distortion (JND)模型在编码过程中的不合理因素。首先,我们设计了一个心理物理实验来分析刚可察觉的梯度差(JNGD),并建立了一个JNGD模型来过滤人眼无法察觉的梯度分量。我们使用总变差(TV)将图像分解为结构图像和纹理图像,并计算它们的梯度。然后,我们使用JNGD对每个梯度图像中难以察觉的梯度分量进行过滤。其次,分析人眼对不同梯度值的视觉敏感性,建立人眼视觉可感知梯度值与JNCD之间的关系模型;最后,考虑人眼在图像边缘、平面和纹理区域的感知差异,调整每个区域的JNCD值,建立整个图像的JNCD模型。为了验证所提出的JNCD模型的有效性,我们将其与经典的JND模型进行了比较,并在高效视频编码(HEVC)平台上进行了测试。该模型在主观视觉效果方面具有优势,有助于分析人类视觉感知冗余和相关的感知视频编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信