{"title":"Microfluidic integration of high power dual-beam laser traps for cell mechanical measurements","authors":"F. Lautenschlaeger, J. Guck","doi":"10.1109/ISOT.2009.5326150","DOIUrl":null,"url":null,"abstract":"The combination of microfluidic systems with laser optical manipulation of suspended objects extends the range of possible investigations in lab-on-chip environments. As an example, mechanical properties of cells can be measured with a specific dual-beam laser trap called the optical stretcher on a single cell basis. The combination of high power laser beams in excess of 1W into a microfluidic environment with high spatial accuracy presents considerable challenges. Here we discuss three alternatives to achieve this goal: a simple glass-capillary setup with only one flow channel, a more elaborate optofluidic chip made of Polydimethylsiloxane (PDMS) for rapid prototyping, and a monolithic glass chip for high durability, damage threshold and optical clarity. Advantages and disadvantage are being discussed. Such microfluidic optical stretcher setups open new possibilities for label-free characterization of cells with biotechnological applications.","PeriodicalId":366216,"journal":{"name":"2009 International Symposium on Optomechatronic Technologies","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Optomechatronic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2009.5326150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The combination of microfluidic systems with laser optical manipulation of suspended objects extends the range of possible investigations in lab-on-chip environments. As an example, mechanical properties of cells can be measured with a specific dual-beam laser trap called the optical stretcher on a single cell basis. The combination of high power laser beams in excess of 1W into a microfluidic environment with high spatial accuracy presents considerable challenges. Here we discuss three alternatives to achieve this goal: a simple glass-capillary setup with only one flow channel, a more elaborate optofluidic chip made of Polydimethylsiloxane (PDMS) for rapid prototyping, and a monolithic glass chip for high durability, damage threshold and optical clarity. Advantages and disadvantage are being discussed. Such microfluidic optical stretcher setups open new possibilities for label-free characterization of cells with biotechnological applications.