On Signal P-300 Detection for BCI Applications Based on Wavelet Analysis and ICA Preprocessing

Gerardo Rosas-Cholula, J. Ramírez-Cortés, V. Alarcón-Aquino, Jorge Martínez-Carballido, P. Gómez-Gil
{"title":"On Signal P-300 Detection for BCI Applications Based on Wavelet Analysis and ICA Preprocessing","authors":"Gerardo Rosas-Cholula, J. Ramírez-Cortés, V. Alarcón-Aquino, Jorge Martínez-Carballido, P. Gómez-Gil","doi":"10.1109/CERMA.2010.48","DOIUrl":null,"url":null,"abstract":"This paper describes an experiment on the detection of a P-300 rhythm from electroencephalographic signals for brain computer interfaces applications. The P300 evoked potential is obtained from visual stimuli followed by a motor response from the subject. The EEG signals are obtained with a 14 electrodes Emotiv EPOC headset. Preprocessing of the signals includes denoising and blind source separation using an Independent Component Analysis algorithm. The P300 rhythm is detected through a time-scale analysis based on the discrete wavelet transform (DWT). Comparison using the Short Time Fourier Transform (STFT), and Wigner–Ville Distribution (WVD) indicates that the DWT outperforms the others as an analyzing tool for P300 rhythm detection.","PeriodicalId":119218,"journal":{"name":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Electronics, Robotics and Automotive Mechanics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CERMA.2010.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper describes an experiment on the detection of a P-300 rhythm from electroencephalographic signals for brain computer interfaces applications. The P300 evoked potential is obtained from visual stimuli followed by a motor response from the subject. The EEG signals are obtained with a 14 electrodes Emotiv EPOC headset. Preprocessing of the signals includes denoising and blind source separation using an Independent Component Analysis algorithm. The P300 rhythm is detected through a time-scale analysis based on the discrete wavelet transform (DWT). Comparison using the Short Time Fourier Transform (STFT), and Wigner–Ville Distribution (WVD) indicates that the DWT outperforms the others as an analyzing tool for P300 rhythm detection.
基于小波分析和ICA预处理的BCI信号P-300检测
本文介绍了脑机接口用脑电图信号检测P-300节律的实验。P300诱发电位是通过视觉刺激获得的,然后是受试者的运动反应。EEG信号是通过一个14电极Emotiv EPOC耳机获得的。信号预处理包括用独立分量分析算法去噪和盲源分离。通过基于离散小波变换(DWT)的时间尺度分析来检测P300节律。使用短时傅里叶变换(STFT)和Wigner-Ville分布(WVD)的比较表明,DWT作为P300节奏检测的分析工具优于其他分析工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信