Fingerprints: detecting meaningful moments for mobile health intervention

Yunlong Wang, Le Duan, Simon Butscher, Jens Müller, Harald Reiterer
{"title":"Fingerprints: detecting meaningful moments for mobile health intervention","authors":"Yunlong Wang, Le Duan, Simon Butscher, Jens Müller, Harald Reiterer","doi":"10.1145/2957265.2965006","DOIUrl":null,"url":null,"abstract":"Personalized and contextual interventions are promising techniques for mobile persuasive technologies in mobile health. In this paper, we propose the \"fingerprints\" technique to analyze the users' daily behavior patterns to find the meaningful moments to better support mobile persuasive technologies, especially mobile health interventions. We assume that for many persons, their behaviors have patterns and can be detected through the sensor data from smartphones. We develop a three-step interactive machine learning workflow to describe the concept and approach of the \"fingerprints\" technique. By this we aim to implement a practical and light-weight mobile intervention system without burdening the users with manual logging. In our feasibility study, we show results that provide first insights into the design of the \"fingerprints\" technique.","PeriodicalId":131157,"journal":{"name":"Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2957265.2965006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Personalized and contextual interventions are promising techniques for mobile persuasive technologies in mobile health. In this paper, we propose the "fingerprints" technique to analyze the users' daily behavior patterns to find the meaningful moments to better support mobile persuasive technologies, especially mobile health interventions. We assume that for many persons, their behaviors have patterns and can be detected through the sensor data from smartphones. We develop a three-step interactive machine learning workflow to describe the concept and approach of the "fingerprints" technique. By this we aim to implement a practical and light-weight mobile intervention system without burdening the users with manual logging. In our feasibility study, we show results that provide first insights into the design of the "fingerprints" technique.
指纹:为移动健康干预检测有意义的时刻
个性化和情境干预是移动医疗中移动说服技术的有前途的技术。在本文中,我们提出了“指纹”技术来分析用户的日常行为模式,以找到有意义的时刻,以更好地支持移动说服技术,特别是移动健康干预。我们假设,对于许多人来说,他们的行为是有规律的,可以通过智能手机的传感器数据来检测。我们开发了一个三步交互式机器学习工作流来描述“指纹”技术的概念和方法。因此,我们的目标是实现一个实用的、轻量级的移动干预系统,而不给用户带来手动记录的负担。在我们的可行性研究中,我们展示的结果为“指纹”技术的设计提供了第一个见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信