Application of simulated annealing to biosignal classification and segmentation

B. Cigale, M. Divjak, D. Zazula
{"title":"Application of simulated annealing to biosignal classification and segmentation","authors":"B. Cigale, M. Divjak, D. Zazula","doi":"10.1109/CBMS.2002.1011372","DOIUrl":null,"url":null,"abstract":"Simulated annealing is no doubt one of the most popular optimisation methods. Like similar methods it is based on natural phenomena. In the paper two examples of how to use this method in medical applications are presented. In the first example the successfulness of simulated annealing is compared to a genetic algorithm on the problem of the optimal coefficients determination for cellular neural networks, when used for segmentation of ovarian ultrasound images. In this field the latter method produced better results. The second example discusses the usage of simulated annealing for optimisation of signal classification.","PeriodicalId":369629,"journal":{"name":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2002.1011372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Simulated annealing is no doubt one of the most popular optimisation methods. Like similar methods it is based on natural phenomena. In the paper two examples of how to use this method in medical applications are presented. In the first example the successfulness of simulated annealing is compared to a genetic algorithm on the problem of the optimal coefficients determination for cellular neural networks, when used for segmentation of ovarian ultrasound images. In this field the latter method produced better results. The second example discusses the usage of simulated annealing for optimisation of signal classification.
模拟退火在生物信号分类和分割中的应用
模拟退火无疑是最流行的优化方法之一。和其他方法一样,它是基于自然现象的。本文给出了该方法在医学应用中的两个实例。在第一个例子中,当用于卵巢超声图像分割时,模拟退火与遗传算法在细胞神经网络最优系数确定问题上的成功进行了比较。在这个领域,后一种方法产生了更好的结果。第二个例子讨论了模拟退火对信号分类优化的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信