Statistical modeling of the lung nodules in low dose computed tomography scans of the chest

A. Farag, J. Graham, S. Elshazly, A. Farag
{"title":"Statistical modeling of the lung nodules in low dose computed tomography scans of the chest","authors":"A. Farag, J. Graham, S. Elshazly, A. Farag","doi":"10.1109/ICIP.2010.5651832","DOIUrl":null,"url":null,"abstract":"This work presents a novel approach in automatic detection of the lung nodules and is compared with respect to parametric nodule models in terms of sensitivity and specificity. A Statistical method is used for generating data driven models of the nodules appearing in low dose CT (LDCT) scans of the human chest. Four types of common lung nodules are analyzed using the Procrustes based AAM method to create descriptive lung nodules. Performance of the new nodule models on clinical datasets is significant over parametric nodule models in both sensitivity and specificity. The new nodule modeling approach is also applicable for automatic classification of nodules into pathologies given a descriptive database. This approach is a major step forward for early diagnosis of lung cancer.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This work presents a novel approach in automatic detection of the lung nodules and is compared with respect to parametric nodule models in terms of sensitivity and specificity. A Statistical method is used for generating data driven models of the nodules appearing in low dose CT (LDCT) scans of the human chest. Four types of common lung nodules are analyzed using the Procrustes based AAM method to create descriptive lung nodules. Performance of the new nodule models on clinical datasets is significant over parametric nodule models in both sensitivity and specificity. The new nodule modeling approach is also applicable for automatic classification of nodules into pathologies given a descriptive database. This approach is a major step forward for early diagnosis of lung cancer.
胸部低剂量计算机断层扫描中肺结节的统计建模
这项工作提出了一种自动检测肺结节的新方法,并在敏感性和特异性方面与参数化结节模型进行了比较。采用统计学方法对低剂量CT (LDCT)人体胸部扫描中出现的结节生成数据驱动模型。使用基于Procrustes的AAM方法对四种常见肺结节进行分析,以创建描述性肺结节。新的结节模型在临床数据集上的表现在敏感性和特异性上都优于参数化结节模型。新的结节建模方法也适用于给定描述性数据库的结节病理自动分类。这种方法是肺癌早期诊断的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信