Broadband source localization using an adaptive technique

B. Senadji, Y. Grenier
{"title":"Broadband source localization using an adaptive technique","authors":"B. Senadji, Y. Grenier","doi":"10.1109/SSAP.1992.246776","DOIUrl":null,"url":null,"abstract":"The first step is a frequency dependent ARMA modeling of the signals coming from an array of sensors in presence of additive white noise. The purpose is to estimate an ARMA model at a single frequency f/sub 0/ which takes into account the information available in the whole frequency band. The idea is then to exploit the frequency variation of the ARMA models. This frequency evolution appears in the state space equation of a Kalman filter indexed by frequency where the state vectors are the ARMA models. The observation equation at each frequency is given by the ARMA modeling of signals. Filtering is followed by smoothing so that the model at frequency f/sub 0/ integrates the information of all the frequency band.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The first step is a frequency dependent ARMA modeling of the signals coming from an array of sensors in presence of additive white noise. The purpose is to estimate an ARMA model at a single frequency f/sub 0/ which takes into account the information available in the whole frequency band. The idea is then to exploit the frequency variation of the ARMA models. This frequency evolution appears in the state space equation of a Kalman filter indexed by frequency where the state vectors are the ARMA models. The observation equation at each frequency is given by the ARMA modeling of signals. Filtering is followed by smoothing so that the model at frequency f/sub 0/ integrates the information of all the frequency band.<>
使用自适应技术的宽带源定位
第一步是在存在加性白噪声的情况下,对来自传感器阵列的信号进行频率相关的ARMA建模。目的是在考虑整个频带可用信息的单个频率f/sub 0/下估计ARMA模型。我们的想法是利用ARMA模型的频率变化。这种频率演化表现在以频率为索引的卡尔曼滤波器的状态空间方程中,其中状态向量是ARMA模型。通过对信号进行ARMA建模,给出了各频率处的观测方程。滤波后进行平滑,使f/sub 0/频率处的模型综合了所有频段的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信