{"title":"Sugar production from agricultural woody wastes by saccharification with Trichoderma viride cellulase.","authors":"N Toyama, K Ogawa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The saccharification of agricultural woody wastes was studied using a commercial enzyme preparation, Cellulase onozuka, derived from Trichoderma viride or the solid culture extracts of the fungus. With the intention of producing sugar at low cost, a simple procedure of enzymatic saccharification of rice straw, bagasse, and sawdust was studied. Delignifying methods of these wastes were investigated using dilute sodium hydroxide solution and dilute peracetic acid. Rice straw and bagasse were effectively delignified by boiling in a 1% sodium hydroxide solution for 3 hr or by autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr. The sawdust from a broad leaved tree (Machilus thunbergii) was delignified by autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr and by subsequent boiling in diluted 1/5 peracetic acid for 1 hr. This type of sawdust was also delignified by boiling in 1/5 peracetic acid for 1 hr and by subsequent autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr. The sawdust from a coniferous tree (Cryptomeria japonica) was delignified by boiling in 1/5 peracetic acid for 1 hr and by subsequent autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr; however, the successive treatment by autoclaving with alkali solution and subsequent boiling with diluted peracetic acid failed to bring about the desired effect. The saccharification of delignified rice straw, bagasse, and sawdust was examined using Cellulase onozuka, wheat bran or rice straw solid culture at various substrate concentrations, resulting in the formation of 5 to 10% sugar solutions after incubation at pH 5.0, 45 degrees C for 48 hr. The optimum substrate concentration existed at around 10%. Reuse of cellulase solution and resaccharification of residual sawdust were considered to be inadequate.</p>","PeriodicalId":75601,"journal":{"name":"Biotechnology and bioengineering symposium","volume":" 5","pages":"225-44"},"PeriodicalIF":0.0000,"publicationDate":"1975-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and bioengineering symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The saccharification of agricultural woody wastes was studied using a commercial enzyme preparation, Cellulase onozuka, derived from Trichoderma viride or the solid culture extracts of the fungus. With the intention of producing sugar at low cost, a simple procedure of enzymatic saccharification of rice straw, bagasse, and sawdust was studied. Delignifying methods of these wastes were investigated using dilute sodium hydroxide solution and dilute peracetic acid. Rice straw and bagasse were effectively delignified by boiling in a 1% sodium hydroxide solution for 3 hr or by autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr. The sawdust from a broad leaved tree (Machilus thunbergii) was delignified by autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr and by subsequent boiling in diluted 1/5 peracetic acid for 1 hr. This type of sawdust was also delignified by boiling in 1/5 peracetic acid for 1 hr and by subsequent autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr. The sawdust from a coniferous tree (Cryptomeria japonica) was delignified by boiling in 1/5 peracetic acid for 1 hr and by subsequent autoclaving at 120 degrees C in a 1% sodium hydroxide solution for 1 hr; however, the successive treatment by autoclaving with alkali solution and subsequent boiling with diluted peracetic acid failed to bring about the desired effect. The saccharification of delignified rice straw, bagasse, and sawdust was examined using Cellulase onozuka, wheat bran or rice straw solid culture at various substrate concentrations, resulting in the formation of 5 to 10% sugar solutions after incubation at pH 5.0, 45 degrees C for 48 hr. The optimum substrate concentration existed at around 10%. Reuse of cellulase solution and resaccharification of residual sawdust were considered to be inadequate.