Knowledge reasoning and Tableau Algorithm improving based on rough description logics

Hongcan Yan, Chen Liu, Baoxiang Liu
{"title":"Knowledge reasoning and Tableau Algorithm improving based on rough description logics","authors":"Hongcan Yan, Chen Liu, Baoxiang Liu","doi":"10.1109/FSKD.2012.6234059","DOIUrl":null,"url":null,"abstract":"The knowledge base of description logics are composed of two parts TBox and ABox. Tableau Algorithm is for the uniformity testing in the knowledge reasoning of DLs, which is based on two-value logics, it can not realize the uniformity testing for multiple-valued concepts. This paper take the fundamental ideal to the system of DLs, improving Tableau Algorithm through the definition of rough concept implication degree, and by using rough concept express related concepts and relationships in the TBbox, The rough description logics can be completed on the reasoning of rough concept, laying the foundation for knowledge base inference engine design.","PeriodicalId":337941,"journal":{"name":"International Conference on Fuzzy Systems and Knowledge Discovery","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2012.6234059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The knowledge base of description logics are composed of two parts TBox and ABox. Tableau Algorithm is for the uniformity testing in the knowledge reasoning of DLs, which is based on two-value logics, it can not realize the uniformity testing for multiple-valued concepts. This paper take the fundamental ideal to the system of DLs, improving Tableau Algorithm through the definition of rough concept implication degree, and by using rough concept express related concepts and relationships in the TBbox, The rough description logics can be completed on the reasoning of rough concept, laying the foundation for knowledge base inference engine design.
基于粗糙描述逻辑的知识推理与Tableau算法改进
描述逻辑知识库由TBox和ABox两部分组成。Tableau算法主要用于dl知识推理中的一致性测试,它基于二值逻辑,无法实现多值概念的一致性测试。本文将基本理念引入到dl系统中,通过定义粗糙概念的蕴涵度来改进Tableau算法,并利用粗糙概念在TBbox中表达相关概念和关系,完成对粗糙概念的推理的粗糙描述逻辑,为知识库推理引擎的设计奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信