Machine Learning for Circuit Aging Simulation

E. Rosenbaum, J. Xiong, A. Yang, Z. Chen, M. Raginsky
{"title":"Machine Learning for Circuit Aging Simulation","authors":"E. Rosenbaum, J. Xiong, A. Yang, Z. Chen, M. Raginsky","doi":"10.1109/IEDM13553.2020.9371931","DOIUrl":null,"url":null,"abstract":"The widespread availability of high-quality open source software for behavioral model optimization motivates the investigation of a behavioral approach to the modeling of aged circuits. A continuous-time formulation of a recurrent neural network (RNN) is compatible with transient circuit simulation, and this work evaluates RNN applicability to the modeling of aged circuits. For any reasonable input, the model should be required to produce an output response that is physically plausible. Approaches to imposing physical constraints on black-box models are outlined briefly.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9371931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The widespread availability of high-quality open source software for behavioral model optimization motivates the investigation of a behavioral approach to the modeling of aged circuits. A continuous-time formulation of a recurrent neural network (RNN) is compatible with transient circuit simulation, and this work evaluates RNN applicability to the modeling of aged circuits. For any reasonable input, the model should be required to produce an output response that is physically plausible. Approaches to imposing physical constraints on black-box models are outlined briefly.
电路老化模拟的机器学习
用于行为模型优化的高质量开源软件的广泛可用性激发了对老化电路建模的行为方法的研究。递归神经网络(RNN)的连续时间公式与暂态电路仿真兼容,本工作评估了RNN在老化电路建模中的适用性。对于任何合理的输入,应该要求模型产生物理上合理的输出响应。简要概述了对黑盒模型施加物理约束的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信