Summarizing task-based applications behavior over many nodes through progression clustering

Lucas Leandro Nesi, V. G. Pinto, L. Schnorr, Arnaud Legrand
{"title":"Summarizing task-based applications behavior over many nodes through progression clustering","authors":"Lucas Leandro Nesi, V. G. Pinto, L. Schnorr, Arnaud Legrand","doi":"10.1109/PDP59025.2023.00014","DOIUrl":null,"url":null,"abstract":"Visualization strategies are a valuable tool in the performance evaluation of HPC applications. Although the traditional Gantt charts are a widespread and enlightening strategy, it presents scalability problems and may misguide the analysis by focusing on resource utilization alone. This paper proposes an overview strategy to indicate nodes of interest for further investigation with classical visualizations like Gantt charts. For this, it uses a progression metric that captures work done per node inferred from the task-based structure, a time-step clustering of those metrics to decrease redundant information, and a more scalable visualization technique. We demonstrate with six scenarios and two applications that such a strategy can indicate problematic nodes more straightforwardly while using the same visualization space. Also, we provide examples where it correctly captures application work progression, showing application problems earlier and as an easy way to compare nodes. At the same time that traditional methods are misleading.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization strategies are a valuable tool in the performance evaluation of HPC applications. Although the traditional Gantt charts are a widespread and enlightening strategy, it presents scalability problems and may misguide the analysis by focusing on resource utilization alone. This paper proposes an overview strategy to indicate nodes of interest for further investigation with classical visualizations like Gantt charts. For this, it uses a progression metric that captures work done per node inferred from the task-based structure, a time-step clustering of those metrics to decrease redundant information, and a more scalable visualization technique. We demonstrate with six scenarios and two applications that such a strategy can indicate problematic nodes more straightforwardly while using the same visualization space. Also, we provide examples where it correctly captures application work progression, showing application problems earlier and as an easy way to compare nodes. At the same time that traditional methods are misleading.
通过进程聚类总结基于任务的应用程序在多个节点上的行为
可视化策略在高性能计算应用程序的性能评估中是一个有价值的工具。尽管传统的甘特图是一种广泛使用且具有启发性的策略,但它存在可伸缩性问题,并且可能由于只关注资源利用率而误导分析。本文提出了一个概述策略,以指示感兴趣的节点,以进一步研究经典的可视化,如甘特图。为此,它使用进度度量来捕获从基于任务的结构推断出的每个节点完成的工作,使用这些度量的时间步聚类来减少冗余信息,并使用更具可伸缩性的可视化技术。我们通过六个场景和两个应用程序演示了这种策略可以在使用相同的可视化空间时更直接地指示有问题的节点。此外,我们还提供了一些示例,其中它可以正确捕获应用程序的工作进度,更早地显示应用程序问题,并作为比较节点的简单方法。同时,传统方法具有误导性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信