Face Recognition Based Rank Reduction SVD Approach

Omed Hassan Ahmed, Joan Lu, Qiang Xu, M. Al-Ani
{"title":"Face Recognition Based Rank Reduction SVD Approach","authors":"Omed Hassan Ahmed, Joan Lu, Qiang Xu, M. Al-Ani","doi":"10.22042/ISECURE.2019.11.0.6","DOIUrl":null,"url":null,"abstract":"Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many techniques to generate efficient recognition results. The implemented facerecognition approach is concentrated on obtaining significant rank matrix via applying a singular value decomposition technique. Measures of dispersion are used to indicate the distribution of data. According to the applied ranks, thereis an adequate reasonable rank that is important to reach via the implemented procedure. Interquartile range, mean absolute deviation, range, variance, and standard deviation are applied to select the appropriate rank. Rank 24, 12, and 6reached an excellent 100% recognition rate with data reduction up to 2 : 1, 4 : 1 and 8 : 1 respectively. In addition, properly selecting the adequate rank matrix is achieved based on the dispersion measures. Obtained results on standard face databases verify the efficiency and effectiveness of the implemented approach.","PeriodicalId":436674,"journal":{"name":"ISC Int. J. Inf. Secur.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISC Int. J. Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22042/ISECURE.2019.11.0.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many techniques to generate efficient recognition results. The implemented facerecognition approach is concentrated on obtaining significant rank matrix via applying a singular value decomposition technique. Measures of dispersion are used to indicate the distribution of data. According to the applied ranks, thereis an adequate reasonable rank that is important to reach via the implemented procedure. Interquartile range, mean absolute deviation, range, variance, and standard deviation are applied to select the appropriate rank. Rank 24, 12, and 6reached an excellent 100% recognition rate with data reduction up to 2 : 1, 4 : 1 and 8 : 1 respectively. In addition, properly selecting the adequate rank matrix is achieved based on the dispersion measures. Obtained results on standard face databases verify the efficiency and effectiveness of the implemented approach.
基于秩降SVD的人脸识别方法
使用标准特征提取技术的标准人脸识别算法往往存在图像性能下降的问题。近年来,奇异值分解和低秩矩阵在模式识别和特征提取等领域得到了广泛的应用。本研究的主要目的是结合多种技术,设计一种高效的人脸识别方法,以产生高效的识别结果。所实现的人脸识别方法主要是通过奇异值分解技术获得显著秩矩阵。离散度的度量用来表示数据的分布。根据应用的等级,有一个足够合理的等级,通过实施的程序达到是很重要的。四分位数间距、平均绝对偏差、极差、方差和标准差被用于选择合适的秩。Rank 24、12、6达到了优异的100%识别率,数据降约率分别达到2:1、4:1、8:1。此外,还可以根据离散度度量来选择合适的秩矩阵。在标准人脸数据库上获得的结果验证了所实现方法的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信