Crossed Eyes: Domain Adaptation for Gaze-Based Mind Wandering Models

R. Bixler, S. D’Mello
{"title":"Crossed Eyes: Domain Adaptation for Gaze-Based Mind Wandering Models","authors":"R. Bixler, S. D’Mello","doi":"10.1145/3448017.3457386","DOIUrl":null,"url":null,"abstract":"The effectiveness of user interfaces are limited by the tendency for the human mind to wander. Intelligent user interfaces can combat this by detecting when mind wandering occurs and attempting to regain user attention through a variety of intervention strategies. However, collecting data to build mind wandering detection models can be expensive, especially considering the variety of media available and potential differences in mind wandering across them. We explored the possibility of using eye gaze to build cross-domain models of mind wandering where models trained on data from users in one domain are used for different users in another domain. We built supervised classification models using a dataset of 132 users whose mind wandering reports were collected in response to thought-probes while they completed tasks from seven different domains for six minutes each (five domains are investigated here: Illustrated Text, Narrative Film, Video Lecture, Naturalistic Scene, and Reading Text). We used global eye gaze features to build within- and cross- domain models using 5-fold user-independent cross validation. The best performing within-domain models yielded AUROCs ranging from .57 to .72, which were comparable for the cross-domain models (AUROCs of .56 to .68). Models built from coarse-grained locality features capturing the spatial distribution of gaze resulted in slightly better transfer on average (transfer ratios of .61 vs .54 for global models) due to improved performance in certain domains. Instance-based and feature-level domain adaptation did not result in any improvements in transfer. We found that seven gaze features likely contributed to transfer as they were among the top ten features for at least four domains. Our results indicate that gaze features are suitable for domain adaptation from similar domains, but more research is needed to improve domain adaptation between more dissimilar domains.","PeriodicalId":262407,"journal":{"name":"ETRA Full Papers","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETRA Full Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448017.3457386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The effectiveness of user interfaces are limited by the tendency for the human mind to wander. Intelligent user interfaces can combat this by detecting when mind wandering occurs and attempting to regain user attention through a variety of intervention strategies. However, collecting data to build mind wandering detection models can be expensive, especially considering the variety of media available and potential differences in mind wandering across them. We explored the possibility of using eye gaze to build cross-domain models of mind wandering where models trained on data from users in one domain are used for different users in another domain. We built supervised classification models using a dataset of 132 users whose mind wandering reports were collected in response to thought-probes while they completed tasks from seven different domains for six minutes each (five domains are investigated here: Illustrated Text, Narrative Film, Video Lecture, Naturalistic Scene, and Reading Text). We used global eye gaze features to build within- and cross- domain models using 5-fold user-independent cross validation. The best performing within-domain models yielded AUROCs ranging from .57 to .72, which were comparable for the cross-domain models (AUROCs of .56 to .68). Models built from coarse-grained locality features capturing the spatial distribution of gaze resulted in slightly better transfer on average (transfer ratios of .61 vs .54 for global models) due to improved performance in certain domains. Instance-based and feature-level domain adaptation did not result in any improvements in transfer. We found that seven gaze features likely contributed to transfer as they were among the top ten features for at least four domains. Our results indicate that gaze features are suitable for domain adaptation from similar domains, but more research is needed to improve domain adaptation between more dissimilar domains.
斗眼:基于凝视的走神模型的领域适应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信