Scalable reconstruction of RDF-archived relational databases

SWIM '13 Pub Date : 2013-06-23 DOI:10.1145/2484712.2484717
S. Stefanova, T. Risch
{"title":"Scalable reconstruction of RDF-archived relational databases","authors":"S. Stefanova, T. Risch","doi":"10.1145/2484712.2484717","DOIUrl":null,"url":null,"abstract":"We have investigated approaches for scalable reconstruction of relational databases (RDBs) archived as RDF files. An archived RDB is reconstructed from a data archive file and a schema archive file, both in N-Triples formats. The archives contain RDF triples representing the archived relational data content and the relational schema describing the content, respectively. When an archived RDB is to be reconstructed, the schema archive is first read to automatically create the RDB schema using a schema reconstruction algorithm which identifies RDB elements by queries to the schema archive. The RDB thus created is then populated by reading the data archive. To populate the RDB we have developed two approaches, the naive Insert Attribute Value (IAV) and Triple Bulk Load (TBL). With the IAV approach the data is populated by stored procedures that execute SQL INSERT or UPDATE statements to insert attribute values in the RDB tables. In the more complex TBL approach the database is populated by bulk loading CSV files generated by sorting the data archive triples joined with schema information. Our experiments show that the TBL approach is substantially faster than the IAV approach.","PeriodicalId":420849,"journal":{"name":"SWIM '13","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SWIM '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484712.2484717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We have investigated approaches for scalable reconstruction of relational databases (RDBs) archived as RDF files. An archived RDB is reconstructed from a data archive file and a schema archive file, both in N-Triples formats. The archives contain RDF triples representing the archived relational data content and the relational schema describing the content, respectively. When an archived RDB is to be reconstructed, the schema archive is first read to automatically create the RDB schema using a schema reconstruction algorithm which identifies RDB elements by queries to the schema archive. The RDB thus created is then populated by reading the data archive. To populate the RDB we have developed two approaches, the naive Insert Attribute Value (IAV) and Triple Bulk Load (TBL). With the IAV approach the data is populated by stored procedures that execute SQL INSERT or UPDATE statements to insert attribute values in the RDB tables. In the more complex TBL approach the database is populated by bulk loading CSV files generated by sorting the data archive triples joined with schema information. Our experiments show that the TBL approach is substantially faster than the IAV approach.
rdf归档关系数据库的可伸缩重建
我们已经研究了对作为RDF文件存档的关系数据库(rdb)进行可伸缩重建的方法。归档的RDB是从数据归档文件和模式归档文件重构的,两者都采用N-Triples格式。归档文件包含RDF三元组,分别表示归档的关系数据内容和描述内容的关系模式。当要重构归档的RDB时,首先读取模式归档以使用模式重构算法自动创建RDB模式,该算法通过对模式归档的查询来标识RDB元素。然后通过读取数据存档来填充这样创建的RDB。为了填充RDB,我们开发了两种方法,简单的插入属性值(IAV)和三重批量负载(TBL)。使用IAV方法,数据由执行SQL INSERT或UPDATE语句的存储过程填充,以在RDB表中插入属性值。在更复杂的TBL方法中,数据库是通过批量加载CSV文件来填充的,CSV文件是通过对与模式信息连接的数据存档三元组进行排序而生成的。我们的实验表明,TBL方法比IAV方法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信